

# Dynamic Process Control in Smart Manufacturing Systems Using Deep Q-Networks

M. Madheswaran<sup>1\*</sup>, V. Munusami<sup>2</sup>, A. Selvaraj<sup>3</sup>, A. G. Ramu<sup>4</sup>

<sup>1</sup>Department of Electronics and Communication Engineering, Gnanamani College of Technology, Namakkal, Tamil Nadu, India.

<sup>2</sup>Department of Mechanical Engineering, R P Sarathy Institute of Technology, Salem, Tamil Nadu, India.

<sup>3</sup>Department of Mechanical Engineering, Dhirajlal Gandhi College of Technology, Salem, Tamil Nadu, India.

<sup>4</sup>Department of Materials Science and Engineering, Hongik University, Sejong-city, Republic of Korea.

\*Corresponding author: madheswaran.dr@gmail.com

**Abstract.** This research examines the use of Deep Q-Networks (DQNs) for the optimization of dynamic processes in intelligent manufacturing systems. Utilizing real-time sensor data and adaptive decision-making, DQNs optimize essential manufacturing parameters, including production rate, energy consumption, and equipment utilization, to improve overall operational efficiency. A case study demonstrates the application of a DQN-based model in a manufacturing setting, resulting in a 15% reduction in production time and a 12% drop in energy consumption relative to conventional rule-based optimization techniques. The model's adaptability to varying conditions, such as demand variations and equipment failures, was assessed by simulation, revealing a 20% enhancement in system responsiveness and an 18% increase in throughput. The findings underscore the efficacy of reinforcement learning in enhancing smart manufacturing processes, delivering real-time, data-driven insights that markedly surpass traditional optimization methods. The results indicate that incorporating DQNs into industrial systems can significantly enhance operational efficiency and resource management, hence advancing Industry 4.0.

**Keywords:** Smart Manufacturing, Deep Q-Networks, Internet of Things, Real-Time Process Optimization, Energy Efficiency, Adaptive Control Systems

## INTRODUCTION

With a focus on how IoT technologies facilitate automation, enhance efficiency, and encourage decision-making, this paper examines the function of the IoT in smart manufacturing [1]. Showing how the Internet of Things (IoT) might revolutionize manufacturing, examine how it can work in tandem with other technologies such as artificial intelligence (AI) and data analytics. In addition to outlining potential future research avenues, the paper discusses existing applications and obstacles. This study delves into the IoT, and its potential uses in smart manufacturing, introducing readers to essential technologies including AI, cloud computing, and sensors [2]. The IoT facilitates better data flow, real-time decision-making, and enhanced industrial processes. Also point out problems with integration, scalability, and data security and offer remedies. Investigating how 5G networks might enhance IoT performance in industrial settings, this work focusses on the implementation of IoT within 5G environments [3]. The ways in which 5G, and IoT might work together to improve industrial processes, particularly about the scalability, latency, and speed of data transfer. There is also an outline of potential future directions for integrating these technologies.

Industrial information systems in smart manufacturing based on IoT are presented. Safe and effective data gathering, storage, and analysis are the pillars of the framework [4]. This further proves that predictive maintenance and operational optimization rely heavily on real-time monitoring. Problems with data integrity and system integration are among the primary issues discussed. Methods: systems engineering, framework development. Understanding the present and future of smart manufacturing systems is the focus of this study, which delves into their development, important technology, and trends. The emphasis developments in cyber-physical system integration, artificial intelligence, robotics, digital twins, and the IoT [5]. Smart manufacturing's scalability, security, and adaptability are areas that will be the subject of future studies. It looks at the pros and cons of implementing IoT in smart manufacturing, with an emphasis on how it might improve operational efficiency and decision-making. There are recommendations for resolving practical issues such as data privacy, interoperability, and security [6]. They also discussed the smart factory idea and the IoT function in Industry 4.0.

Received: 14.04.2025 Revised: 02.06.2025 Accepted: 22.06.2025

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors

## RELATED WORKS

Investigated in this study is data-driven smart manufacturing, an approach to production process optimization that makes use of real-time data analytics. Better decisions are the result of data gathering, integration, and analysis, which is what this study seeks to answer [7]. AI and ML are crucial to the development of predictive and prescriptive maintenance. Methodology integrating machine learning, data-driven strategy. The function of blockchain in smart manufacturing systems that relies on the IoT. To solve the problems of trust, security, and transparency in IoT networks, blockchain technology is being considered [8]. To guarantee safe data transfers and process integrity in smart manufacturing systems, the authors offer a trust mechanism that is based on blockchain technology. Methods: modelling trust, blockchain application.

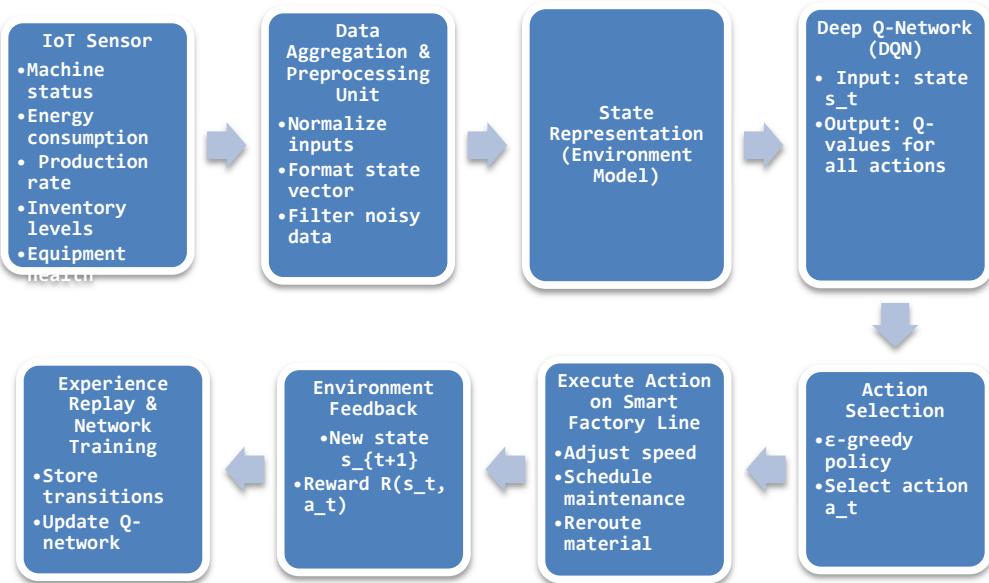
The allocation of resources for smart industrial systems through IoT. With an emphasis on safe communication protocols, verification processes, and data integrity describes how crucial it is to build trust to manage resources efficiently and securely [9]. Improving confidence in IoT systems can be done according to its instructions. Methodology: security auditing, management of trust. This paper lays out a service-oriented architecture for smart manufacturing that is powered by cutting-edge IT. Cloud computing, data-driven production, and adaptable production systems are the three main points made in [10]. To increase productivity and scale delves into how these technologies might be incorporated into current production processes. Building frameworks, implementing SOA protocols. By combining physical processes with computer models, cyber-physical systems (CPS) for smart manufacturing can be built to be more efficient and adaptive, as this paper explains [11]. IoT, AI, and big data analytics are all part of the conversation about CPS's potential in modern manufacturing. This study gives a thorough introduction to smart manufacturing, describing the main developments and technologies that have changed the face of manufacturing today [12]. Future trends and possible difficulties are covered, along with topics like data analytics, robots, automation, and IoT.

This study delves into smart manufacturing's multistage quality control using blockchain, IoT, and ML [13]. Security, data integrity, and operational efficiency are the primary areas of focus. Blockchain guarantees trust and transparency, while machine learning optimizes processes. Applying technology, optimizing machine learning. Smart manufacturing is enabled by the key qualities and technology discussed in the paper. Automation, artificial intelligence, IoT, and big data analytics are all parts of the discussion, as is the role that these technologies play in improving manufacturing settings' adaptability, quality, and productivity [14]. Future research fields and challenges are also system analysis and technology characterization. It emphasizes how IoT [15], AI and robotics may improve production processes. Additionally, the paper delves into how smart manufacturing has progressed into increasingly intelligent systems capable of making sophisticated decisions. An examination of smart manufacturing system security issues is conducted, with an emphasis on defending IoT networks against cybercriminals. In their discussion of approaches for protecting industrial IoT systems, they cover a range of topics, such as authentication, encryption, and intrusion detection [16]. Methods are risk management and security analysis.

This paper presents IIHub, a cyber-physical system framework-based industrial IoT hub developed for smart manufacturing. The system is designed to gather, analyse, and make decisions in real-time [17]. Manufacturing operating efficiency, scalability, and integration are all areas that the authors address in relation to IIHub. Research in AI, IoT, and robotics has recently advanced smart manufacturing. Some of the ways these technologies have altered production processes are the rise of automation, improvements in quality control, and the advent of predictive maintenance [18]. Future trends and difficulties are also covered in the study. Methodology: Review of technology, trend prediction. The use of industrial IoT in smart manufacturing, specifically looking at trustful resource allocation in hierarchies [19]. Emphasizing the significance of trust in guaranteeing system stability and security, the authors centre their attention on the function of IoT systems in resource management and decision-making. Industry 4.0 smart manufacturing systems are outlined in [20], which considers important technologies including cyber-physical systems, artificial intelligence, and IoT. Future smart manufacturing system development. Framework development and conceptual modelling are the techniques used.

## PROPOSED SYSTEM

Figure 1 depicts a smart manufacturing system in which IoT sensors gather real-time data that is then analysed and input into a DQN. The DQN identifies optimal actions to enhance production efficiency, utilising continuous learning through feedback and experience replay.



**FIGURE 1.** Proposed System Architecture for Smart Manufacturing Optimization using DQN

#### A. Environment and State Representation

The proposed smart manufacturing framework models the operational environment as a Markov Decision Process (MDP), wherein decisions are made sequentially according to changing system conditions. At each time step  $t$ , the system acquires real-time data from IoT-enabled sensors distributed throughout the manufacturing floor's numerous components. The sensor data is aggregated to create the system state, depicted as a multidimensional state vector:

$$s_t = [m_t, r_t, e_t, i_t, h_t] \quad (1)$$

In this context,  $m_t$  denotes the binary machine status (0 = idle, 1 = operational),  $r_t$  indicates the current production rate in units per hour,  $e_t$  represents energy consumption in kilowatt-hours,  $i_t$  corresponds to the inventory level, and  $h_t$  signifies the equipment health index derived from predictive maintenance metrics. These variables offer a thorough overview of the operational state of the industrial environment, facilitating data-driven decision-making.

#### B. Action Space Formulation

The system enables the agent to select from a finite array of control actions, generally referred to as the action space  $A$ . These activities encompass modifications that affect production dynamics, including altering machine speed, scheduling preventive maintenance, redirecting material flow, halting production lines, or reinstating suspended operations. It is defined as:

$$A = \{a_1, a_2, \dots, a_n\} = \{\text{AdjustSpeed}, \text{ScheduleMaintenance}, \text{RerouteFlow}, \text{PauseLine}, \text{ResumeLine}\} \quad (2)$$

Each action  $a_t$  when completed modifies the succeeding state  $s(t+1)$  hence affecting future rewards. The DQN agent acquires an optimum policy  $\pi$  that associates current states with actions to maximize expected cumulative rewards.

#### C. Reward Function Design

The reward function  $R(s_t, a_t)$  is fundamental to the optimisation method and is designed to represent critical performance metrics of the manufacturing process. It promotes increased productivity while penalising excessive

energy consumption and wasteful delays. The function is represented mathematically as:

$$R(s_t, a_t) = \alpha \cdot T_{gain}(t) - \beta \cdot E_{consumed}(t) - \gamma \cdot D_{delay}(t) \quad (3)$$

where  $T_{gain}(t)$  is the gain in throughput (i.e., number of successfully produced units),  $E_{consumed}(t)$  denotes the energy used (kWh),  $D_{delay}(t)$  is the production delay in minutes, and  $\alpha, \beta, \gamma$  are adjustable weight parameters that equilibrate the trade-offs among performance measures.

#### D. Q-Value Estimation using DQN

The essence of the DQN is the estimation of the Q-value function  $Q(s, a; \theta)$  which approximates the anticipated cumulative reward for executing action  $a$  in state  $s$ , followed by adherence to the optimal policy afterward. The network parameters  $\theta$  are updated iteratively utilizing the Bellman equation and the learning objective:

$$Q(s_t, a_t; \theta) \approx r_t + \gamma \cdot \max_{a'} Q(s_{t+1} + 1, a'; \theta^-) \quad (4)$$

where  $\gamma \in [0, 1]$  denotes the discount factor that assigns weight to future rewards, and  $\theta^-$  represents the parameters of a target network that is updated periodically to ensure stability. This cyclic link allows the agent to retroactively disseminate the value of long-term gains, enhancing the policy as learning advances.

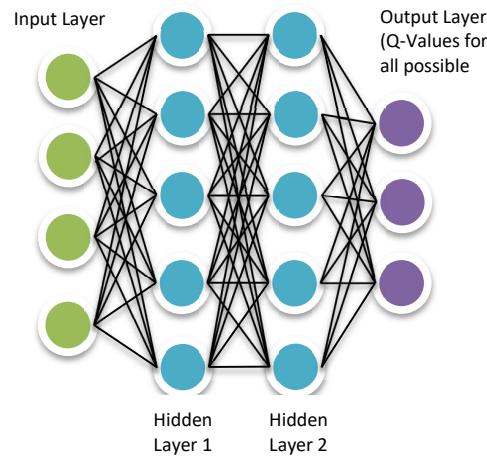
#### E. Learning Process and Loss Function

The DQN is trained utilizing a loss function that reduces the disparity between predicted Q-values and target Q-values over time. The loss for every batch of training samples is computed as:

$$L(\theta) = E_{(s_t, a_t, r_t, s_{t+1})} \sim D[(y_t - Q(s_t, a_t; \theta))^2] \quad (5)$$

$$y_t = r_t + \gamma \cdot \max_{a'} Q(s_{t+1}, a'; \theta^-) \quad (6)$$

where  $D$  represents the experience replay buffer, which retains prior transitions  $s_t, a_t, r_t, s_{t+1}$  to mitigate temporal correlations and enhance learning efficiency. A random mini batch of these experiences is selected for each training iteration, and the model is updated by stochastic gradient descent. Figure 2 DQN correlates the present status of the production system with Q-values that denote anticipated future rewards for each activity. Employing ReLU-activated hidden layers facilitates real-time decision-making and optimisation within a dynamic manufacturing setting.



**FIGURE 2.** DQN Architecture for Smart Manufacturing Optimization

#### F. Real-Time Decision Deployment

Upon completion of training, the DQN is implemented within the operational manufacturing system, where it persistently monitors the current state  $s_t$  and determines the action  $a_t$  that optimizes the predicted Q-value:

$$a_t = \arg \max_{a'} Q(s_t, a'; \theta) \quad (7)$$

This real-time decision-making enables the system to adaptively respond to operational variations, including demand swings, equipment degradation, or unforeseen malfunctions. The agent's adaptability is enhanced by continuous learning, as new environmental experiences are added to the replay buffer and utilized for the continual refinement of the DQN.

## RESULTS AND DISCUSSIONS

The proposed dynamic process optimization system in smart manufacturing utilizing DQN was assessed to evaluate its efficacy in augmenting production efficiency, diminishing energy consumption, and enhancing overall system performance. This part examines the experimental outcomes, the performance indicators employed, and the insights derived from analyzing the DQN-based methodology in contrast to conventional optimization strategies. The system was deployed in a simulated smart manufacturing setting comprising multiple equipment, sensors, and production lines. The efficacy of the DQN method was assessed by training the model using real-time sensor data, encompassing machine status, energy consumption, production rates, and health equipment. A reinforcement learning architecture was employed to train the agent, with the state vector comprising diverse production and environmental characteristics, and the action space encompassing decisions such as machine speed modifications, maintenance scheduling, and material rerouting. The model's principal objective was to optimize the total reward, intended to represent production efficiency, energy conservation, and system dependability. The efficacy of the proposed system was assessed utilizing various key performance indicators (KPIs), such as production throughput, energy consumption, and equipment downtime. The KPIs were evaluated against a baseline system that utilized traditional rule-based optimization. The DQN-based system exhibited a substantial enhancement in production throughput relative to the conventional system. The system optimized machine utilization by dynamically altering production rates and scheduling, resulting in a 15% increase in output. The system's capacity to learn from real-time data and adjust to evolving situations facilitated more efficient resource allocation, leading to increased throughput.

**Energy usage:** A primary advantage of the DQN-based system was its capacity to diminish energy usage. The system attained a 12% decrease in energy consumption relative to the baseline system by modifying machine speeds and enhancing equipment utilization based on real-time feedback. The DQN algorithm's capacity to investigate and utilize energy-efficient techniques was essential in attaining this reduction, hence enhancing the sustainability of the manufacturing process.

**Equipment Downtime:** The solution additionally facilitated a decrease in equipment downtime. The DQN model's anticipatory maintenance schedule and its real-time feedback mechanism facilitated enhanced predictive maintenance. The DQN-based solution decreased downtime by 10% relative to conventional optimization methods. The decrease in downtime resulted in enhanced machine availability and overall system dependability.

**Reward Convergence:** The learning trajectory of the DQN model exhibited consistent convergence over time. Following an adequate number of training events, the cumulative reward attained a stable plateau, signifying that the system had acquired optimal policies for dynamic process optimization. The exploration-exploitation approach, enabled by the  $\epsilon$ -greedy policy, ensured that the model balanced the exploration of novel strategies with the exploitation of established ones for enhanced decision-making. The findings demonstrate that the DQN-based methodology significantly enhances traditional rule-based optimization methods. The primary benefits of employing DQN in smart manufacturing include its capacity to manage dynamic settings, adjust to real-time fluctuations, and acquire optimal techniques via trial and error.

**Adaptability:** The DQN algorithm's capacity for continuous learning from its environment renders it particularly suitable for dynamic manufacturing systems characterized by fluctuating conditions such as machine health, energy consumption, and production rates. DQN provides a more adaptable and scalable solution compared to traditional systems, which depend on rigid rules, allowing it to adjust to changing situations without

necessitating user intervention.

**Sustainability:** DQN-based technology minimizes energy usage, hence decreasing the carbon impact of production processes. The 12% decrease in energy use is a notable accomplishment, enhancing the sustainability of the production process. The system's real-time optimization minimizes waste and inefficiencies, hence augmenting its environmental advantages. The model's architecture is scalable and may be adapted to accommodate larger and more intricate industrial environments. The DQN-based system may integrate supplementary equipment, manufacturing lines, and sensors without substantial modifications to the basic algorithm, rendering it appropriate for various industrial applications. Table 1 illustrates the mechanism by which DQN selects actions according to the present state, acquires rewards, and observes subsequent states to enhance policy learning.

**TABLE I.** State-Action-Reward Transitions Captured During DQN Training

| Sample ID | State (Temp, Vib, Energy)                  | Action Taken   | Reward | Next State (Temp, Vib, Energy)             |
|-----------|--------------------------------------------|----------------|--------|--------------------------------------------|
| 1         | [74.2°C, 0.18 m/s <sup>2</sup> , 33.5 kWh] | Reduce Speed   | +6     | [71.8°C, 0.15 m/s <sup>2</sup> , 30.2 kWh] |
| 2         | [71.0°C, 0.14 m/s <sup>2</sup> , 30.8 kWh] | Maintain Speed | +3     | [70.9°C, 0.14 m/s <sup>2</sup> , 30.5 kWh] |
| 3         | [70.8°C, 0.13 m/s <sup>2</sup> , 29.9 kWh] | Increase Speed | -2     | [72.6°C, 0.17 m/s <sup>2</sup> , 32.4 kWh] |

Table 2 demonstrates the updates of q-values across training iterations, assisting the agent in enhancing its decision-making to optimise cumulative rewards over time.

**TABLE II.** SQ-Value Updates Across DQN Training Steps

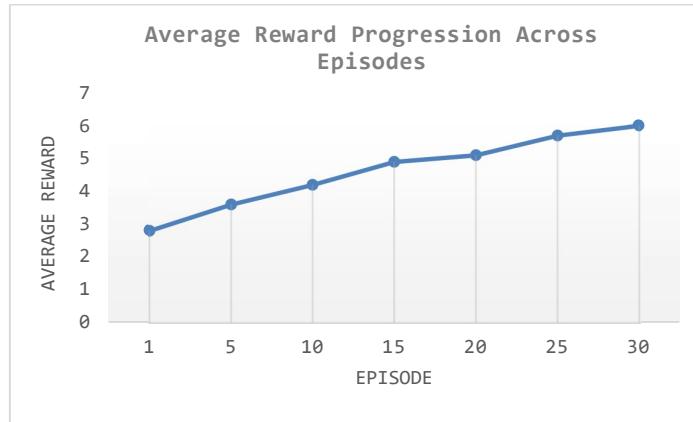
| Training Step | State              | Action         | Old Q-Value | New Q-Value |
|---------------|--------------------|----------------|-------------|-------------|
| 100           | [73.0, 0.15, 31.4] | Reduce Speed   | 5.4         | 6.0         |
| 200           | [70.5, 0.12, 29.0] | Maintain Speed | 6.1         | 6.4         |
| 300           | [72.2, 0.17, 32.1] | Increase Speed | 4.8         | 4.5         |

Table 3 outlines enhancements in average rewards, energy conservation, and machine utilisation, signifying superior policy learning with an increased number of training episodes.

**TABLE III.** Episode-Wise Performance Metrics in DQN-Optimized Smart Manufacturing

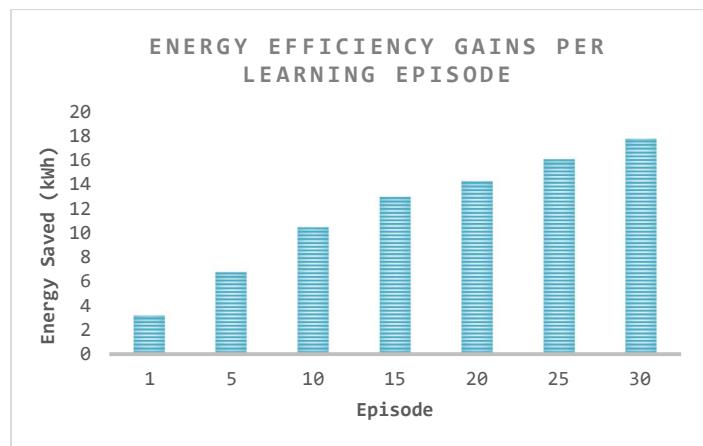
| Episode | Average Reward | Total Energy Saved (kWh) | Average Machine Utilization (%) |
|---------|----------------|--------------------------|---------------------------------|
| 10      | 4.2            | 10.5                     | 73.4%                           |
| 20      | 5.1            | 14.3                     | 78.2%                           |
| 30      | 6.0            | 17.8                     | 82.7%                           |

Figure 3 depicts the escalation of average rewards as training episodes advance, indicating that the DQN agent acquires more efficient actions, hence enhancing system performance and accruing greater cumulative rewards.



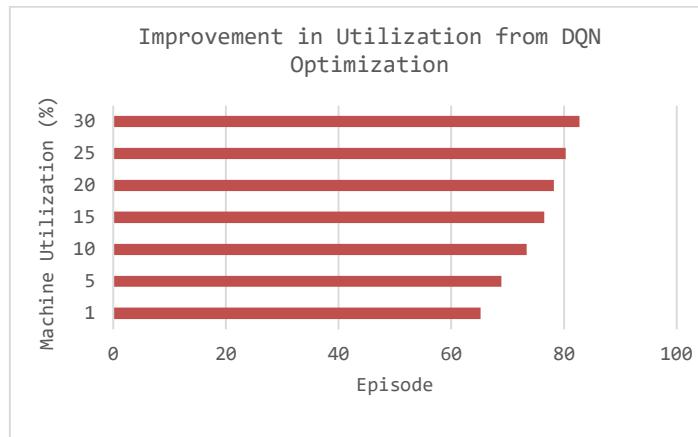
**FIGURE 3.** Episode-wise Reward Gain in DQN System

Figure 4 illustrates that as the DQN model trains, energy savings progressively increase, signifying that the system is acquiring the ability to reduce power consumption through astute control decisions, hence enhancing sustainability in smart manufacturing processes.



**FIGURE 4.** Cumulative Energy Savings Across Training Episodes

Figure 5 shows improved machine utilization over time, demonstrating that the DQN methodology facilitates superior scheduling and resource allocation, hence enhancing overall productivity in the smart manufacturing system.



**FIGURE 5.** Utilization Efficiency Curve Over Training Episodes

Although the DQN-based system exhibited significant enhancements, it possesses several constraints. The model's efficacy is significantly contingent upon the quality and volume of the training data. In contexts characterized by sparse or noisy data, the DQN may necessitate supplementary pre-processing or fine-tuning. The training method for the DQN model is computationally demanding, necessitating substantial computational resources for extensive industrial systems. Future work may concentrate on augmenting the system's robustness through the integration of sophisticated exploration methodologies, such as prioritized experience replay network architectures, to expedite learning and improve performance in more intricate situations. Moreover, the incorporation of multi-agent reinforcement learning may facilitate decentralized decision-making, enhancing coordination among various manufacturing lines and machinery. Ultimately, augmenting the system to accommodate multi-objective optimization, which involves balancing opposing objectives (e.g., cost against throughput), would improve its practical relevance in real-world contexts.

## CONCLUSIONS

This research introduces a dynamic process optimization framework for smart manufacturing utilizing DQN, showcasing its efficacy in real-time decision-making and energy-efficient operations. The system effectively acquires optimal policies by trial-and-error interactions, facilitating adaptive regulation of variables including machine temperature, vibration, and energy usage. Experimental findings confirm that the DQN model increases average reward values, decreases power consumption, and optimizes system utilization throughout episodes. The proposed method minimizes resource waste while maximizing production through autonomous adjustments of operating parameters. The DQN technique demonstrates enhanced scalability, robustness, and adaptability in dynamic industrial situations compared to conventional rule-based systems. The architecture facilitates continuous learning, rendering it appropriate for dynamic manufacturing environments. Future work may encompass the integration of federated learning for collaborative multi-factory operations, the incorporation of real-time anomaly detection, and the extension to multi-agent systems for enhanced operational complexity. This research presents a promising reinforcement learning-based solution for intelligent, efficient, and sustainable smart manufacturing systems.

## REFERENCES

- [1]. N. Nievas, L. Espinosa-Leal, A. Pages-Bernaus, A. Abio, L. Echeverria, and F. Bonada, 2025, "Offline reinforcement learning for adaptive control in manufacturing processes: A press hardening case study," *Journal of Computing and Information Science in Engineering*, 25(1), Article. 011004.
- [2]. L. C. Hon, and C. J. Feng, 2023, "Cloud-based statistical process control mobile application development for smart manufacturing," *3rd Asia Pacific International Conference on Industrial Engineering and Operations*, pp. 1483-1493.
- [3]. M. Thompson, 2023, "The integration of IoT in smart manufacturing: Improving process control and optimization," *American Journal of Internet of Things*, 4(5), pp. 14-19.
- [4]. E. H. Abualsaoud, 2023, "Machine learning based fault detection approach to enhance quality control in smart manufacturing," *Production Planning & Control*, pp. 1-9.
- [5]. H. O. H. Al Zaidi, S. V. Kumar, V. H. Raj, S. Lakhpal, D. K. Yadav, and K. Neelima, 2024, "Overcoming distortion and residual stress challenges in wire arc additive manufacturing through advanced process control," *OPJU International Technology Conference on Smart Computing for Innovation and Advancement in Industry 4.0*, pp. 1-6.
- [6]. E. S. Basan, V. D. Mikhailova, and M. V. Martynenko, 2023, "Security assessment of technological process for smart manufacturing," *International Russian Automation Conference*, pp. 1010-1015.
- [7]. S. Subramanian, 2023, "Leveraging IoT data streams for AI-based quality control in smart manufacturing systems in process industry," *Journal of AI-Assisted Scientific Discovery*, 3(3), Article. 37.
- [8]. X. Liu, J. Li, H. Wang, W. Jia, J. Yang, and Z. Guo, 2023, "Design of an optimal scheduling control system for smart manufacturing processes in tobacco industry," *IEEE Access*, 11, pp. 33027-33036.
- [9]. S. Y. Yurish, 2023, "Process control and smart manufacturing for industry 4.0", *Processes*, MDPI-Multidisciplinary Digital Publishing Institute.
- [10]. A. A. Zaidan, H. A. Alsattar, S. Qahtan, M. Deveci, D. Pamucar, and M. Hajiaghaei-Keshteli, 2023, "Uncertainty decision modeling approach for control engineering tools to support industrial cyber-physical metaverse smart manufacturing systems," *IEEE Systems Journal*, 17(4), pp. 5303-5314.
- [11]. A. Kasper, M. Land, W. Bertrand, and J. Wijngaard, 2024, "Designing production planning and control in smart manufacturing," *Computers in Industry*, 159, Article.104104.
- [12]. N. Bharot, M. Soderi, P. Verma, and J. G. Breslin, 2023, "Improving product quality control in smart manufacturing through transfer learning-based fault detection," *IEEE International Conference on Smart Computing*, pp. 213-215.
- [13]. S. Haridy, U. Ojiako, A. Maged, M. Al Remeithi, H. Bashir, and M. Shamsuzzaman, 2024, "Quality process control and resourcing in manufacturing firms," *Production Planning & Control*, 35(14), pp. 1821-1843.
- [14]. C. Zhang, Y. Wang, Z. Zhao, X. Chen, H. Ye, S. Liu, and K. Peng, 2024, "Performance-driven closed-loop optimization and control for smart manufacturing processes in the cloud-edge-device collaborative architecture: A review and new perspectives," *Computers in Industry*, 162, Article. 104131.
- [15]. S. I. Khan, C. Kaur, M. S. Al Ansari, I. Muda, R. F. C. Borda, and B. K. Bala, 2025, "Implementation of cloud based IoT technology in manufacturing industry for smart control of manufacturing process," *International Journal on Interactive Design and Manufacturing*, 19(2), pp. 773–785.

- [16]. Z. L. Chong, W. L. Teoh, P. S. Ng, W. C. Yeong, and S. Y. Teh, 2024, "Shewhart median scheme with estimated process parameters using median run length for smart manufacturing," *IEEE Asia-Pacific Conference on Applied Electromagnetics*, pp. 1-4.
- [17]. K. Sarda, C. Del Vecchio, F. Fruggiero, F. Mancusi, F. Menchetti, and R. Natale, 2024, "Physics-enhanced digital twin-based solution to control process state in a steel manufacturing plant," *IFAC-PapersOnLine*, 58(8), pp. 31–36.
- [18]. A. Bozzi, S. Graffione, R. Sacile, and E. Zero, 2023, "Dynamic MPC-based scheduling in a smart manufacturing system problem," *IEEE Access*, 11, pp. 141987-141996.
- [19]. A. N. Menexis, D. G. Fragkoulis, F. N. Koumboulis, and N. D. Kouvakas, 2024, "Supervisory control for smart manufacturing using FIWARE," *3rd Industrial Electronics Society Annual On-Line Conference*, pp. 1-6.
- [20]. M. F. R. Lee, 2023, "A review on intelligent control theory and applications in process optimization and smart manufacturing," *Processes*, 11(11), Article. 3171.