
International Journal of Industrial Engineering  
   2025;9(2):1-9. 

ISSN: 2456-8449 
 

 
Received: 14.04.2025 Revised: 02.06.2025 Accepted: 22.06.2025 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors  
1 

 

Dynamic Process Control in Smart Manufacturing 
Systems Using Deep Q-Networks 

M. Madheswaran1*, V. Munusami2, A. Selvaraj3, A. G. Ramu4 

1Department of Electronics and Communication Engineering, Gnanamani College of Technology, 
Namakkal, Tamil Nadu, India. 

2Department of Mechanical Engineering, R P Sarathy Institute of Technology, Salem, Tamil Nadu, India. 
3Department of Mechanical Engineering, Dhirajlal Gandhi College of Technology, Salem, Tamil Nadu, India. 

4Department of Materials Science and Engineering, Hongik University, Sejong-city, Republic of Korea. 
 

*Corresponding author: madheswaran.dr@gmail.com 
 

Abstract. This research examines the use of Deep Q-Networks (DQNs) for the optimization of dynamic processes in 
intelligent manufacturing systems.  Utilizing real-time sensor data and adaptive decision-making, DQNs optimize 
essential manufacturing parameters, including production rate, energy consumption, and equipment utilization, to 
improve overall operational efficiency. A case study demonstrates the application of a DQN-based model in a 
manufacturing setting, resulting in a 15% reduction in production time and a 12% drop in energy consumption relative 
to conventional rule-based optimization techniques.  The model's adaptability to varying conditions, such as demand 
variations and equipment failures, was assessed by simulation, revealing a 20% enhancement in system responsiveness 
and an 18% increase in throughput.  The findings underscore the efficacy of reinforcement learning in enhancing smart 
manufacturing processes, delivering real-time, data-driven insights that markedly surpass traditional optimization 
methods. The results indicate that incorporating DQNs into industrial systems can significantly enhance operational 
efficiency and resource management, hence advancing Industry 4.0. 

Keywords: Smart Manufacturing, Deep Q-Networks, Internet of Things, Real-Time Process Optimization, Energy 
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INTRODUCTION 

With a focus on how IoT technologies facilitate automation, enhance efficiency, and encourage decision-
making, this paper examines the function of the IoT in smart manufacturing [1].  Showing how the Internet of 
Things (IoT) might revolutionize manufacturing, examine how it can work in tandem with other technologies 
such as artificial intelligence (AI) and data analytics.  In addition to outlining potential future research avenues, 
the paper discusses existing applications and obstacles.   This study delves into the IoT, and its potential uses in 
smart manufacturing, introducing readers to essential technologies including AI, cloud computing, and sensors 
[2].  The IoT facilitates better data flow, real-time decision-making, and enhanced industrial processes.  Also point 
out problems with integration, scalability, and data security and offer remedies. Investigating how 5G networks 
might enhance IoT performance in industrial settings, this work focusses on the implementation of IoT within 5G 
environments [3].  The ways in which 5G, and IoT might work together to improve industrial processes, 
particularly about the scalability, latency, and speed of data transfer.  There is also an outline of potential future 
directions for integrating these technologies.  

Industrial information systems in smart manufacturing based on IoT are presented.  Safe and effective data 
gathering, storage, and analysis are the pillars of the framework [4]. This further proves that predictive 
maintenance and operational optimization rely heavily on real-time monitoring.  Problems with data integrity and 
system integration are among the primary issues discussed.  Methods: systems engineering, framework 
development. Understanding the present and future of smart manufacturing systems is the focus of this study, 
which delves into their development, important technology, and trends.  The emphasis developments in cyber-
physical system integration, artificial intelligence, robotics, digital twins, and the IoT [5].  Smart manufacturing's 
scalability, security, and adaptability are areas that will be the subject of future studies.   It looks at the pros and 
cons of implementing IoT in smart manufacturing, with an emphasis on how it might improve operational 
efficiency and decision-making.  There are recommendations for resolving practical issues such as data privacy, 
interoperability, and security [6].  They also discussed the smart factory idea and the IoT function in Industry 4.0. 
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RELATED WORKS 

 Investigated in this study is data-driven smart manufacturing, an approach to production process optimization 
that makes use of real-time data analytics.  Better decisions are the result of data gathering, integration, and 
analysis, which is what this study seeks to answer [7].  AI and ML are crucial to the development of predictive 
and prescriptive maintenance.  Methodology integrating machine learning, data-driven strategy. The function of 
blockchain in smart manufacturing systems that relies on the IoT. To solve the problems of trust, security, and 
transparency in IoT networks, blockchain technology is being considered [8]. To guarantee safe data transfers and 
process integrity in smart manufacturing systems, the authors offer a trust mechanism that is based on blockchain 
technology.  Methods: modelling trust, blockchain application. 

The allocation of resources for smart industrial systems through IoT.  With an emphasis on safe communication 
protocols, verification processes, and data integrity describes how crucial it is to build trust to manage resources 
efficiently and securely [9].  Improving confidence in IoT systems can be done according to its instructions.  
Methodology: security auditing, management of trust. This paper lays out a service-oriented architecture for smart 
manufacturing that is powered by cutting-edge IT.  Cloud computing, data-driven production, and adaptable 
production systems are the three main points made in [10].  To increase productivity and scale delves into how 
these technologies might be incorporated into current production processes. Building frameworks, implementing 
SOA protocols. By combining physical processes with computer models, cyber-physical systems (CPS) for smart 
manufacturing can be built to be more efficient and adaptive, as this paper explains [11].  IoT, AI, and big data 
analytics are all part of the conversation about CPS's potential in modern manufacturing.  This study gives a 
thorough introduction to smart manufacturing, describing the main developments and technologies that have 
changed the face of manufacturing today [12].  Future trends and possible difficulties are covered, along with 
topics like data analytics, robots, automation, and IoT. 

This study delves into smart manufacturing's multistage quality control using blockchain, IoT, and ML [13].  
Security, data integrity, and operational efficiency are the primary areas of focus.  Blockchain guarantees trust 
and transparency, while machine learning optimizes processes.  Applying technology, optimizing machine 
learning. Smart manufacturing is enabled by the key qualities and technology discussed in the paper.  Automation, 
artificial intelligence, IoT, and big data analytics are all parts of the discussion, as is the role that these technologies 
play in improving manufacturing settings' adaptability, quality, and productivity [14].  Future research fields and 
challenges are also system analysis and technology characterization. It emphasizes how IoT [15], AI and robotics 
may improve production processes.  Additionally, the paper delves into how smart manufacturing has progressed 
into increasingly intelligent systems capable of making sophisticated decisions. An examination of smart 
manufacturing system security issues is conducted, with an emphasis on defending IoT networks against 
cybercriminals.  In their discussion of approaches for protecting industrial IoT systems, they cover a range of 
topics, such as authentication, encryption, and intrusion detection [16].  Methods are risk management and security 
analysis. 

This paper presents IIHub, a cyber-physical system framework-based industrial IoT hub developed for smart 
manufacturing.  The system is designed to gather, analyse, and make decisions in real-time [17].  Manufacturing 
operating efficiency, scalability, and integration are all areas that the authors address in relation to IIHub. Research 
in AI, IoT, and robotics has recently advanced smart manufacturing.  Some of the ways these technologies have 
altered production processes are the rise of automation, improvements in quality control, and the advent of 
predictive maintenance [18].  Future trends and difficulties are also covered in the study.  Methodology: Review 
of technology, trend prediction. The use of industrial IoT in smart manufacturing, specifically looking at trustful 
resource allocation in hierarchies [19].  Emphasizing the significance of trust in guaranteeing system stability and 
security, the authors centre their attention on the function of IoT systems in resource management and decision-
making. Industry 4.0 smart manufacturing systems are outlined in [20], which considers important technologies 
including cyber-physical systems, artificial intelligence, and IoT. Future smart manufacturing system 
development.  Framework development and conceptual modelling are the techniques used. 

PROPOSED SYSTEM 

Figure 1 depicts a smart manufacturing system in which IoT sensors gather real-time data that is then 
analysed and input into a DQN. The DQN identifies optimal actions to enhance production efficiency, utilising 
continuous learning through feedback and experience replay. 
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FIGURE 1. Proposed System Architecture for Smart Manufacturing Optimization using DQN  

A. Environment and State Representation 

The proposed smart manufacturing framework models the operational environment as a Markov Decision 
Process (MDP), wherein decisions are made sequentially according to changing system conditions.  At each time 
step t, the system acquires real-time data from IoT-enabled sensors distributed throughout the manufacturing 
floor's numerous components.  The sensor data is aggregated to create the system state, depicted as a 
multidimensional state vector: 

𝑠௧ = [𝑚௧ , 𝑟௧ , 𝑒௧ , 𝑖௧ , ℎ௧]     (1) 
 

In this context, 𝑚௧ denotes the binary machine status (0 = idle, 1 = operational), 𝑟௧ indicates the current 
production rate in units per hour, 𝑒௧ represents energy consumption in kilowatt-hours, it corresponds to the 
inventory level, and ℎ௧ signifies the equipment health index derived from predictive maintenance metrics. These 
variables offer a thorough overview of the operational state of the industrial environment, facilitating data-driven 
decision-making. 

B. Action Space Formulation 

The system enables the agent to select from a finite array of control actions, generally referred to as the action 
space 𝐴.  These activities encompass modifications that affect production dynamics, including altering machine 
speed, scheduling preventive maintenance, redirecting material flow, halting production lines, or reinstating 
suspended operations.  It is defined as: 

𝐴 = {𝑎ଵ, 𝑎ଶ, … , 𝑎௡} = {𝐴𝑑𝑗𝑢𝑠𝑡𝑆𝑝𝑒𝑒𝑑, 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒, 𝑅𝑒𝑟𝑜𝑢𝑡𝑒𝐹𝑙𝑜𝑤, 𝑃𝑎𝑢𝑠𝑒𝐿𝑖𝑛𝑒, 𝑅𝑒𝑠𝑢𝑚𝑒𝐿𝑖𝑛𝑒}  (2) 
 
Each action a_t when completed modifies the succeeding state s(t+1) hence affecting future rewards.  The 

DQN agent acquires an optimum policy 𝜋 that associates current states with actions to maximize expected 
cumulative rewards. 

C. Reward Function Design 

The reward function 𝑅(𝑠௧ , 𝑎௧)is fundamental to the optimisation method and is designed to represent critical 
performance metrics of the manufacturing process.  It promotes increased productivity while penalising excessive 
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energy consumption and wasteful delays.  The function is represented mathematically as: 

𝑅(𝑠௧ , 𝑎௧) =∝∙ 𝑇௚௔௜௡(𝑡) − 𝛽 ∙ 𝐸௖௢௡௦௨௠௘ௗ(𝑡) − 𝛾 ∙ 𝐷ௗ௘௟௔௬(𝑡)   (3) 
 

where 𝑇௚௔௜௡(𝑡) is the gain in throughput (i.e., number of successfully produced units), 𝐸௖௢௡௦௨௠௘ௗ(𝑡) denotes 
the energy used (kWh),𝐷ௗ௘௟௔௬(𝑡) is the production delay in minutes, and  α, β, γ are adjustable weight parameters 
that equilibrate the trade-offs among performance measures. 

D. Q-Value Estimation using DQN 

The essence of the DQN is the estimation of the Q-value function 𝑄 (𝑠, 𝑎; 𝜃 ) which approximates the 
anticipated cumulative reward for executing action 𝑎 a in state 𝑠 s, followed by adherence to the optimal policy 
afterward. The network parameters 𝜃 are updated iteratively utilizing the Bellman equation and the learning 
objective: 

𝑄(𝑠௧ , 𝑎௧; 𝜃) ≈ 𝑟௧ + 𝛾 ⋅ 𝑄௔ᇲ
௠௔௫ (𝑠௧ାଵ + 1, 𝑎ᇱ; 𝜃ି)    (4) 

 
where 𝛾 ∈ [0, 1] denotes the discount factor that assigns weight to future rewards, and 𝜃− represents the 
parameters of a target network that is updated periodically to ensure stability.  This cyclic link allows the agent to 
retroactively disseminate the value of long-term gains, enhancing the policy as learning advances. 

E. Learning Process and Loss Function 

The DQN is trained utilizing a loss function that reduces the disparity between predicted Q-values and target 
Q-values over time.  The loss for every batch of training samples is computed as: 

𝐿(𝜃) = Ε(௦೟,௔೟,௥೟,௦೟శభ)
∼ 𝐷[(𝑦௧ − 𝑄(𝑠௧ , 𝑎௧; 𝜃))ଶ]    (5) 

𝑦௧ = 𝑟௧ + 𝛾 ⋅ 𝑄௔ᇲ
௠௔௫ (𝑠௧ାଵ, 𝑎ᇱ; 𝜃ି)      (6) 

where D represents the experience replay buffer, which retains prior transitions 𝑠௧ , 𝑎௧ , 𝑟௧ , 𝑠௧ାଵ to mitigate temporal 
correlations and enhance learning efficiency.  A random mini batch of these experiences is selected for each 
training iteration, and the model is updated by stochastic gradient descent. Figure 2 DQN correlates the present 
status of the production system with Q-values that denote anticipated future rewards for each activity. Employing 
ReLU-activated hidden layers facilitates real-time decision-making and optimisation within a dynamic 
manufacturing setting. 

 

FIGURE 2. DQN Architecture for Smart Manufacturing Optimization 
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F. Real-Time Decision Deployment 

Upon completion of training, the DQN is implemented within the operational manufacturing system, where it 
persistently monitors the current state 𝑠𝑡 and determines the action 𝑎𝑡 that optimizes the predicted Q-value: 

𝑎௧ = arg 𝑄௔ᇲ
௠௔௫ (𝑠௧ , 𝑎′; 𝜃)       (7) 

This real-time decision-making enables the system to adaptively respond to operational variations, including 
demand swings, equipment degradation, or unforeseen malfunctions.  The agent's adaptability is enhanced by 
continuous learning, as new environmental experiences are added to the replay buffer and utilized for the continual 
refinement of the DQN. 

RESULTS AND DISCUSSIONS 

The proposed dynamic process optimization system in smart manufacturing utilizing DQN was assessed to 
evaluate its efficacy in augmenting production efficiency, diminishing energy consumption, and enhancing overall 
system performance.  This part examines the experimental outcomes, the performance indicators employed, and 
the insights derived from analyzing the DQN-based methodology in contrast to conventional optimization 
strategies. The system was deployed in a simulated smart manufacturing setting comprising multiple equipment, 
sensors, and production lines.  The efficacy of the DQN method was assessed by training the model using real-
time sensor data, encompassing machine status, energy consumption, production rates, and health equipment. A 
reinforcement learning architecture was employed to train the agent, with the state vector comprising diverse 
production and environmental characteristics, and the action space encompassing decisions such as machine speed 
modifications, maintenance scheduling, and material rerouting.  The model's principal objective was to optimize 
the total reward, intended to represent production efficiency, energy conservation, and system dependability. The 
efficacy of the proposed system was assessed utilizing various key performance indicators (KPIs), such as 
production throughput, energy consumption, and equipment downtime.  The KPIs were evaluated against a 
baseline system that utilized traditional rule-based optimization. The DQN-based system exhibited a substantial 
enhancement in production throughput relative to the conventional system. The system optimized machine 
utilization by dynamically altering production rates and scheduling, resulting in a 15% increase in output.  The 
system's capacity to learn from real-time data and adjust to evolving situations facilitated more efficient resource 
allocation, leading to increased throughput. 

Energy usage: A primary advantage of the DQN-based system was its capacity to diminish energy usage.  
The system attained a 12% decrease in energy consumption relative to the baseline system by modifying machine 
speeds and enhancing equipment utilization based on real-time feedback.  The DQN algorithm's capacity to 
investigate and utilize energy-efficient techniques was essential in attaining this reduction, hence enhancing the 
sustainability of the manufacturing process. 

Equipment Downtime: The solution additionally facilitated a decrease in equipment downtime.  The DQN 
model's anticipatory maintenance schedule and its real-time feedback mechanism facilitated enhanced predictive 
maintenance.  The DQN-based solution decreased downtime by 10% relative to conventional optimization 
methods.  The decrease in downtime resulted in enhanced machine availability and overall system dependability. 

Reward Convergence: The learning trajectory of the DQN model exhibited consistent convergence over time.  
Following an adequate number of training events, the cumulative reward attained a stable plateau, signifying that 
the system had acquired optimal policies for dynamic process optimization.  The exploration-exploitation 
approach, enabled by the ε-greedy policy, ensured that the model balanced the exploration of novel strategies with 
the exploitation of established ones for enhanced decision-making. The findings demonstrate that the DQN-based 
methodology significantly enhances traditional rule-based optimization methods.  The primary benefits of 
employing DQN in smart manufacturing include its capacity to manage dynamic settings, adjust to real-time 
fluctuations, and acquire optimal techniques via trial and error. 

Adaptability: The DQN algorithm's capacity for continuous learning from its environment renders it 
particularly suitable for dynamic manufacturing systems characterized by fluctuating conditions such as machine 
health, energy consumption, and production rates. DQN provides a more adaptable and scalable solution compared 
to traditional systems, which depend on rigid rules, allowing it to adjust to changing situations without 
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necessitating user intervention. 

Sustainability: DQN-based technology minimizes energy usage, hence decreasing the carbon impact of 
production processes.  The 12% decrease in energy use is a notable accomplishment, enhancing the sustainability 
of the production process.  The system's real-time optimization minimizes waste and inefficiencies, hence 
augmenting its environmental advantages. The model's architecture is scalable and may be adapted to 
accommodate larger and more intricate industrial environments.  The DQN-based system may integrate 
supplementary equipment, manufacturing lines, and sensors without substantial modifications to the basic 
algorithm, rendering it appropriate for various industrial applications. Table 1 illustrates the mechanism by which 
DQN selects actions according to the present state, acquires rewards, and observes subsequent states to enhance 
policy learning. 

TABLE I. State-Action-Reward Transitions Captured During DQN Training 

Sample ID State (Temp, Vib, Energy) Action Taken Reward Next State (Temp, Vib, Energy) 
1 [74.2°C, 0.18 m/s², 33.5 kWh] Reduce Speed +6 [71.8°C, 0.15 m/s², 30.2 kWh] 
2 [71.0°C, 0.14 m/s², 30.8 kWh] Maintain Speed +3 [70.9°C, 0.14 m/s², 30.5 kWh] 
3 [70.8°C, 0.13 m/s², 29.9 kWh] Increase Speed -2 [72.6°C, 0.17 m/s², 32.4 kWh] 

 
Table 2 demonstrates the updates of q-values across training iterations, assisting the agent in enhancing its 

decision-making to optimise cumulative rewards over time. 

TABLE II. SQ-Value Updates Across DQN Training Steps 

Training Step State Action Old Q-Value New Q-Value 
100 [73.0, 0.15, 31.4] Reduce Speed 5.4 6.0 
200 [70.5, 0.12, 29.0] Maintain Speed 6.1 6.4 
300 [72.2, 0.17, 32.1] Increase Speed 4.8 4.5 

 
Table 3 outlines enhancements in average rewards, energy conservation, and machine utilisation, signifying 

superior policy learning with an increased number of training episodes. 

TABLE III. Episode-Wise Performance Metrics in DQN-Optimized Smart Manufacturing 

Episode Average Reward Total Energy Saved (kWh) Average Machine Utilization (%) 
10 4.2 10.5 73.4% 
20 5.1 14.3 78.2% 
30 6.0 17.8 82.7% 

 

Figure 3 depicts the escalation of average rewards as training episodes advance, indicating that the DQN agent 
acquires more efficient actions, hence enhancing system performance and accruing greater cumulative rewards. 

 

FIGURE 3. Episode-wise Reward Gain in DQN System 
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Figure 4 illustrates that as the DQN model trains, energy savings progressively increase, signifying that the 
system is acquiring the ability to reduce power consumption through astute control decisions, hence enhancing 
sustainability in smart manufacturing processes. 

 

    FIGURE 4. Cumulative Energy Savings Across Training Episodes 

Figure 5 shows improved machine utilization over time, demonstrating that the DQN methodology facilitates 
superior scheduling and resource allocation, hence enhancing overall productivity in the smart manufacturing 
system. 

 

FIGURE 5. Utilization Efficiency Curve Over Training Episodes 
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coordination among various manufacturing lines and machinery.  Ultimately, augmenting the system to 
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CONCLUSIONS 

This research introduces a dynamic process optimization framework for smart manufacturing utilizing DQN, 
showcasing its efficacy in real-time decision-making and energy-efficient operations.  The system effectively 
acquires optimal policies by trial-and-error interactions, facilitating adaptive regulation of variables including 
machine temperature, vibration, and energy usage.  Experimental findings confirm that the DQN model increases 
average reward values, decreases power consumption, and optimizes system utilization throughout episodes. The 
proposed method minimizes resource waste while maximizing production through autonomous adjustments of 
operating parameters.  The DQN technique demonstrates enhanced scalability, robustness, and adaptability in 
dynamic industrial situations compared to conventional rule-based systems.  The architecture facilitates continuous 
learning, rendering it appropriate for dynamic manufacturing environments. Future work may encompass the 
integration of federated learning for collaborative multi-factory operations, the incorporation of real-time anomaly 
detection, and the extension to multi-agent systems for enhanced operational complexity.  This research presents a 
promising reinforcement learning-based solution for intelligent, efficient, and sustainable smart manufacturing 
systems. 
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