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Abstract. Weather forecasting plays a crucial role in numerous sectors, ranging from agriculture and transportation to
disaster management. Traditional meteorological models, while valuable, often face challenges in accurately predicting
complex and dynamic weather patterns. This research paper explores the integration of machine learning (ML)
techniques into weather forecasting to enhance predictive accuracy and reliability. The study begins by providing an
overview of the limitations of conventional numerical weather prediction models and emphasizes the need for innovative
approaches. It introduces a weather forecasting system based on machine learning, utilizing Decision Tree, Support
Vector Machine, Random Forest, K-Nearest Neighbors, Gradient Boosting, Logistic Regression, and Naive Bayes
algorithms. The paper discusses the development and training of ML models using large datasets to capture intricate
relationships among atmospheric variables. Among the evaluated models, Gradient Boosting achieves the highest
predictive accuracy by effectively capturing nonlinear relationships and minimizing prediction errors. Performance
evaluation demonstrates that integrating multiple machine learning techniques provides a stable, reliable, and scalable
solution for short- to medium-term weather forecasting.
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INTRODUCTION

Weather forecasting has long been a critical aspect of modern society, influencing decisions ranging from
agriculture and transportation to disaster preparedness. The ability to accurately predict atmospheric conditions is
paramount for minimizing the impact of natural events and optimizing various human activities. Traditional
numerical weather prediction models, rooted in physics-based simulations, have significantly advanced our
understanding of atmospheric dynamics. However, the inherent complexity of atmospheric systems and the
limitations of these models in capturing intricate patterns have spurred the exploration of alternative
methodologies. In recent years, there has been a paradigm shift in the field of weather forecasting, driven by the
integration of machine learning (ML) techniques. Machine learning, a subset of artificial intelligence, offers a
data-driven approach that can uncover hidden patterns and relationships within vast and complex datasets. This
has the potential to complement and, in some cases, surpass the capabilities of traditional models. As we delve
into an era marked by unprecedented technological advancements, leveraging machine learning in weather
forecasting emerges as a promising avenue to enhance predictive accuracy, extend lead times, and improve overall
reliability. This research paper aims to explore and elucidate the advancements in weather forecasting facilitated
by machine learning techniques. The integration of ML into meteorological practices opens new avenues for
understanding and predicting atmospheric phenomena, providing valuable insights that can shape decision-
making processes across various sectors. This introduction sets the stage for a comprehensive exploration of the
methodologies, challenges, and practical applications associated with utilizing machine learning in weather
forecasting, with the goal of contributing to the ongoing evolution of meteorological science and its societal
impact.

RELATED WORKS

The foundation of modern meteorology relies on physics-based numerical weather prediction models, such as
the Weather Research and Forecasting (WRF) model and the European Centre for Medium-Range Weather
Forecasts (ECMWF) model [1]. These models simulate atmospheric processes using complex equations to predict
weather patterns. However, their limitations in capturing fine-scale features and handling non-linear interactions

Received: 02.10.2025 Revised: 14.11.2025 Accepted: 28.11.2025
Licensed under a CC-BY 4.0 license | Copyright (c) by the authors
48



International Journal of Modern Computation, Information, and Communication Technology
2025;8(1):48-55.
ISSN: 2581-5954

have spurred the exploration of alternative approaches [2]. The integration of machine learning techniques in
meteorology has gained significant attention in recent years. The potential of support vector machines and neural
networks in improving precipitation predictions [3]. Other studies explored the application of machine learning
for short-term weather forecasting, emphasizing the advantages of data-driven approaches [4]. Feature selection
plays a crucial role in developing accurate machine learning models for weather forecasting. The importance of
selecting relevant atmospheric variables and the impact of feature engineering in capturing complex interactions
within the data [5].

Ensemble methods, combining predictions from multiple models, have demonstrated superior performance in
weather forecasting [6]. The study showcased the benefits of ensemble methods in probabilistic weather
predictions, emphasizing their ability to quantify uncertainty and improve forecast reliability [7]. Despite the
promising results, integrating machine learning into operational weather forecasting systems poses challenges [8].
Discusses issues such as model interpretability, data assimilation, and the need for real-time adaptability,
highlighting the complexities of transitioning from research to practical implementation [9]. The rise of deep
learning, particularly convolutional neural networks (CNNs) and Long Short-Term Memory (LSTM), has shown
promise in capturing spatial and temporal dependencies within weather data [10]. Notable studies demonstrate the
efficacy of deep learning architectures in improving the accuracy of precipitation and temperature forecasts [11].
Numerous case studies validate the practical applicability of machine learning in weather forecasting. For
instance, explores the use of machine learning in predicting extreme weather events, showcasing its potential in
enhancing preparedness and response strategies [12]. While the integration of machine learning in weather
forecasting has shown remarkable progress, there exist research gaps and opportunities for further exploration.
Future directions include investigating the impact of climate change on machine learning-based predictions,
refining data assimilation techniques, and addressing computational challenges for large-scale operational
implementation [13].

PROPOSED SYSTEM

In response to the limitations of traditional numerical weather prediction models and the evolving landscape
of machine learning in meteorology, the proposed system aims to leverage advanced machine learning techniques
to enhance the accuracy and reliability of weather forecasting. The system outlined in this research introduces
innovative methodologies and addresses specific challenges associated with integrating machine learning into
operational forecasting systems. Figure 1 shows the machine learning life cycle.
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FIGURE 1. Machine Learning Life Cycle

The proposed system advocates for the development of hybrid machine learning models that combine the
strengths of various algorithms. Ensemble methods, blending the predictions of multiple models, will be explored
to harness the complementary strengths of different machine learning architectures. This approach seeks to
mitigate the weaknesses of individual models, enhance predictive accuracy, and provide more robust forecasts.

49



International Journal of Modern Computation, Information, and Communication Technology
2025;8(1):48-55.
ISSN: 2581-5954

The proposed system outlined in this research represents a holistic approach to integrating machine learning into
weather forecasting. By combining various machine learning architectures, emphasizing real-time adaptability,
ensuring model interpretability, and addressing scalability concerns, the system aims to advance the state-of-the-
art in weather prediction and contribute to the ongoing evolution of meteorological practices.

Data Collection: Gather historical weather data from diverse sources, including ground-based weather
stations, satellites, and other remote sensing instruments. Acquire datasets containing atmospheric variables such
as temperature, humidity, wind speed, air pressure, and precipitation on both spatial and temporal scales.

Data Preprocessing: Clean and preprocess the collected data to handle missing values, outliers, and
inconsistencies. Normalize or standardize data to ensure uniformity and facilitate the convergence of machine
learning algorithms.

Feature Selection and Engineering: Conduct a comprehensive analysis to identify relevant features crucial
for accurate weather predictions. Explore the creation of derived features that capture complex interactions and
patterns within the atmospheric data.

Model Selection: Evaluate and select appropriate machine learning algorithms based on the nature of the
weather forecasting problem. Experiment with a range of models, including but not limited to neural networks,
support vector machines, decision trees, and ensemble methods.

Training and Validation: Split the dataset into training and validation sets to train the machine learning
models. Employ 10-fold cross-validation techniques to assess model generalization performance and mitigate
over-fitting.

Model Evaluation: Assess the performance of machine learning models using appropriate evaluation metrics,
considering factors like accuracy, precision, recall, and F1 score. Compare the results with traditional numerical
weather prediction models to gauge improvements. The following chine learning models are employed.

e Decision Tree: Decision Tree [14] categorises weather data by using feature criteria to define
circumstances such as sunny, wet, or stormy. It is interpretable, accommodates mixed data, but may
overfit when presented with noisy datasets. Information Gain is used to decide the best feature to split.

IG(S,A) = Entropy(S) — z %Entropy(&,) (D

veValues(A)

e Support Vector Machine (SVM): SVM shows meteorological categories using an ideal hyperplane,
forecasting severe occurrences or temperatures [15]. Efficient for high-dimensional datasets,
accommodates nonlinear patterns using kernel methods, although requires meticulous parameter
optimisation.

e Random Forest: Random Forest [16] integrates several decision trees to enhance precision in
forecasting rainfall, temperature, or wind conditions. It mitigates overfitting, accommodates absent data,
however, may exhibit diminished interpretability compared to an individual tree.

e K-Nearest Neighbors (KNN): KNN anticipates weather by analysing similarities to past data points,
making it suitable for short-term predictions [17]. It is straightforward, non-parametric, however
computationally intensive and susceptible to feature scaling and noisy data.

e Gradient Boosting: Gradient Boosting [18,21] constructs models to reduce forecast errors, effectively
capturing nonlinear correlations in meteorological phenomena. Exceedingly precise at forecasting

precipitation or temperature, however susceptible to overfitting if inadequately calibrated.

o Logistic Regression: Logistic Regression calculates the odds of binary or categorical meteorological
occurrences, such as the likelihood of rain or storms [19]. It is straightforward and comprehensible,
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although less efficacious for intricate nonlinear meteorological correlations. The Sigmoid function maps
feature to probability of event.

1
1 + e~ (BotBix1++Pnxn) (2)

P(y=11X)=

e Naive Bayes: Naive Bayes [20] forecasts meteorological conditions by probabilistic reasoning,
predicated on the premise of feature independence. Rapid and effective, appropriate for limited datasets;
nonetheless, interrelations across meteorological variables may reduce accuracy.

Deployment: Implement methods and deploy it to enhance the interpretability of machine learning models,
ensuring that forecasters can comprehend and trust the predictions. The system employs many machine learning
techniques on the pre-processed data.

RESULTS AND DISCUSSION

The success of machine learning models in weather forecasting heavily relies on the quality and diversity of the
datasets used for training, validation, and testing. The dataset selected for this research aims to encompass a
comprehensive range of atmospheric variables, temporal scales, and geographical locations to ensure the robustness
and generalization of the developed machine learning models. Integrate datasets that document historical weather
events, including extreme events such as hurricanes, tornadoes, and heat waves. This information is crucial for
evaluating the performance of machine learning models in predicting and responding to high-impact weather
conditions. Explore open-access meteorological databases provided by organizations like the National Oceanic and
Atmospheric Administration (NOAA) and the European Space Agency (ESA). These databases offer a wealth of
meteorological data covering various spatiotemporal scales. The selection of this diverse and extensive dataset aims
to provide a rich and representative set of information for training and evaluating machine learning models in
weather forecasting. The combination of ground-based observations, satellite imagery, reanalysis data, and real-
time information ensures that the developed models can handle the complexity and variability inherent in
atmospheric conditions. Figure 2 to Figure 6 show the various outputs and their corresponding codes are also given
below:

#graph himidity vs temparture
plt.scatter(np.logl0(dataset[' hum']),dataset[' tempm'])
plt.title('humidity vs temprature')

plt.xlabel(" humidity ")
plt.ylabel("'------------ temprature----------- ")
plt.show()
humidity vs temprature
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FIGURE 2. Humidity vs. Temperature
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#histogram of data how they looks like on graphical represantation
plt.hist(dataset[' tempm'],facecolor="red',edgecolor="blue',bins=50,range=(5,35))
plt.title("temperature histogram")

plt.ylabel("------ no. of occurrence temperature values----")

plt.show()

temprature histogram
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FIGURE 3. Temperature histogram

#graph dewpoint vs temparture
plt.scatter(dataset[' dewptm'],dataset[' tempm'])
plt.title(" dewpoint vs temprature')

plt.xlabel("----------- dewpoint------------- ")
plt.ylabel("------------ temprature----------- ")
plt.show()
dewpoint vs temprature
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FIGURE 4. Dewpoint vs. Temperature
plt.title(" dewpoint histogram")
plt.xlabel("------------ dewpoint values------------- ")
plt.ylabel("------ no. of occurance dewpoint values----")

plt.show()
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FIGURE 5. Dewpoint Histogram

training & testing for temprature prediction @ data size 0.2:-

y_prediction=model.predict(X_test)
score2=r2_score(y_test,y prediction)

print("Temprature prediction Accuracy @test size=0.2=",score2*100)

dataset.shape

Temprature prediction Accuracy @test_size=0.2= 88.97643526246964

(99396, 10)

#histogram of data how they looks like on graphical represantation
plt.hist(y_prediction,facecolor="red',edgecolor='blue',bins=10,range=(5,35))
plt.title("predicted temprature histogram @test_size=0.2")

plt.xlabel("------ Predicted temprature values------------- ")

plt.ylabel("------ no. of occurance temprature values----")

plt.show()

predicted temprature histogram @test_size=0.2
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FIGURE 6. Predicted temperature histogram

Accuracy is a metric that measures how often a machine learning model correctly predicts the outcome. It is
the number of correct predictions divided by the total number of predictions across all classes. In this experiment
we have gone through Decision Tree, Support vector machine, Random Forest, KNN algorithm, gradient boosting,
Logistic regression and Naive Bayes methods and the results are shown below.
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TABLE 1. Accuracy of Different Models

S1 Num Model Name Accuracy
1 Decision Tree 71.52
2 Support Vector Machine 60.55
3 Random Forest 78.42
4 KNN 75.78
5 Gradient boosting 80.87
6 Logistic regression 75.15
7 Naive Bayes 72.88
CONCLUSION

This research endeavors to contribute to the ongoing evolution of weather forecasting by investigating and
harnessing the potential of machine learning techniques. The exploration of advancements in machine learning for
weather forecasting has revealed promising avenues for improving predictive accuracy, extending lead times, and
enhancing overall reliability. The proposed system, integrating hybrid machine learning models, deep learning
architectures, real-time data assimilation, and continuous model updating, represents a comprehensive approach to
address the challenges faced by traditional numerical weather prediction models. Out of the entire model it has
found that Gradient boosting method gives highest accuracy in comparison to other models.
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