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Abstract. The integration of Temporal Fusion Transformers (TFTs) with IoT-driven data streams presents an effective 
approach for improving Railway Passenger Information Systems (PIS). This study introduces an innovative framework 
that utilizes real-time data from IoT sensors, including GPS, environmental, and ticketing systems, to predict train 
schedules, delays, and other significant events. A predictive model based on TFTs is developed to process and analyze 
temporal data, thereby enhancing prediction accuracy. Quantitative results indicate that the proposed system achieves a 
15% improvement in delay prediction accuracy compared with conventional machine learning models, along with a 
20% reduction in root mean square error (RMSE). Moreover, passenger wait times decrease by an average of 10% due 
to improved prediction accuracy. The platform supports real-time updates, enabling more dynamic and responsive 
passenger notifications. This study highlights the significant potential of integrating IoT data with TFTs to enhance 
operational efficiency, reduce delays, and improve the overall passenger experience in modern railway systems. The 
findings suggest that incorporating TFTs with IoT data can substantially transform railway Passenger Information 
Systems, leading to improved service reliability and passenger satisfaction. 

Keywords: Passenger Information System, Temporal Fusion Transformers, Predictive Analytics, Passenger 
Satisfaction, Transportation Systems.  

INTRODUCTION 

With the help of the Internet of Things (IoT), a sophisticated passenger information system can improve 
transportation by giving users up-to-the-minute information on the whereabouts and status of their vehicles [1]. 
By collecting data from sensors in both vehicles and stations, it enhances operational efficiency and passenger 
experience through real-time information exchange and seamless connectivity. This is achieved using wireless 
communication networks. Using the IoT, a smart city's intelligent passenger information system may provide up-
to-the-minute details including transportation schedules, car whereabouts, and safety warnings [2].  To maximize 
transportation efficiency and service quality, the system combines sensor networks with cloud computing to 
optimize the supply of timely information. Passengers are guaranteed to receive correct and up-to-date route 
information. The IoT is improving commuters' access to travel information through an Indian metro system's 
passenger information system [3].  It alerts the user in real-time on the whereabouts and status of vehicles and any 
changes to their schedule using Zigbee communication protocols and GPS-enabled tracking.  By facilitating 
greater communication and cooperation between transportation providers and their customers, the system 
streamlines operations, cuts down on wait times, and enhances crowd control. Smart urban transport passenger 
information systems built on the IoT use sensor networks to track and disseminate data in real-time, such as the 
whereabouts of vehicles and the number of passengers on board [4].  To optimize routing, boost operational 
efficiency, and improve passenger services by offering personalized, real-time information, cloud computing 
processes the data and machine learning algorithms forecast passenger flow. 

Protecting riders' personal information is a top priority for the IoT transit system [5]. Data analytics, encryption 
methods, and secure communication protocols all work together to make services more efficient while keeping 
user information private.  Better and safer transport services are possible due to predictive analytics made possible 
by machine learning models, which enable better and more accurate traffic predictions and optimized routes. IoT 
is being used by a school bus passenger monitoring system to track the whereabouts and attendance of students in 
real-time by use of PIR sensors and GPS tracking [6].  Using cloud computing to send real-time updates to parents 



International Journal of Modern Computation, Information, and Communication Technology   
2025;8(1):32-39. 
ISSN: 2581-5954 

 

33 
 

and school administrators, the system tracks pupils' movements and ensures that bus arrival times are precise. This 
improves safety and efficiency. Using Bluetooth Low Energy (BLE) technology, an IoT boarding pass system can 
keep tabs on travellers.  Bluetooth Low Energy (BLE) beacons track the whereabouts of passengers and provide 
ongoing information on the boarding process [7].  By giving precise, real-time information, this system optimizes 
passenger flow, decreases delays, and promotes personalized services in transport hubs like rail stations and 
airports. Cloud computing, big data analytics, and IoT sensors are all part of an intelligent passenger transport IoT 
infrastructure [8]. It optimizes routes, enhances service delivery, and predicts maintenance needs by collecting 
and processing real-time data.  Using behaviour analysis, the system can dynamically modify transportation 
services, providing users with transportation that is more personalized, efficient, and dependable. 

The IoT smart bus transportation system uses location-tracking GPS, radio frequency identification (RFID), 
and other IoT sensors to plan the most efficient routes [9].  Bus schedules and passenger information can be 
updated in real-time due to wireless connections and cloud computing.  The system's improved operating stability 
and reduced energy consumption allow it to cut waiting times, increase scheduling efficiency, and give passengers 
greater services. IoT sensors installed on buses measure occupancy and report back on the vehicle's capacity in 
real time.  To make operations run more smoothly and efficiently, the system combines IoT sensors with cloud 
computing [10] to provide accurate passenger information, optimize schedules, decrease overcrowding, and 
improve comfort through the provision of immediate data on bus availability. By combining machine learning 
with 5G communication technologies, a 5G-IoT-based passenger risk assessment technique can evaluate 
behaviour and identify possible hazards [11]. Technology employs IoT sensors to monitor passengers in real-time 
and quickly analyze data to make sure everything is safe.  It improves transport network safety by enabling rapid 
reactions in emergency situations. By monitor things like temperature, air quality, and seat occupancy, an IoT 
system in trains improves passenger comfort and services [12]. Improved service quality and predictive 
maintenance updates are made possible by collecting real-time data using IoT sensors and analyzing it using cloud 
computing.  This guarantees that passengers will have a pleasant, risk-free, and time-efficient trip. 

Information-Centric Networking (ICN) security is the backbone of an IoT passenger service system for 
railways.  It uses IoT devices to monitor passenger services and traffic, and it transmits data securely to protect 
users' privacy [13].  By bolstering communication and data security, the system provides real-time updates on 
train locations and schedules, which improves service reliability, safety, and passenger comfort in the railway 
sector. With the help of IoT technology, the CARE system tracks and enhances the comfort of rail passengers.  
Utilizing cloud computing for real-time data analysis [14], the system utilizes sensors to monitor environmental 
characteristics like temperature and occupancy.  Customers are better satisfied because of improved rail service 
management, predictive maintenance, and individualized attention made possible by technological advancements. 
With sensors, an IoT passenger monitoring system can keep tabs on how full a bus is, how much room there is 
inside, and when the bus is expected to arrive.  To improve transportation efficiency, the system uses cloud 
computing to optimize routes and decrease waiting times [15]. It aids public transport systems in offering better 
service and more comfortable rides by giving accurate passenger information. An IoT passenger information 
system monitors the whereabouts and estimated arrival times of buses via GPS.  To optimize scheduling and 
provide estimated arrival times, the system employs machine learning techniques [16].  Commuters can enjoy 
better service, shorter wait times, and improved reliability in bus rapid transit (BRT) systems due to the real-time 
updates it offers. 

An analysis of the privacy issues raised by smart airports delves into the ways in which IoT systems deal with 
sensitive data [17].  Secure data-sharing protocols, encryption, and anonymization are the main points of this study 
regarding the protection of passenger data.  Furthermore, it stresses the significance of data security measures and 
open passenger consent processes in securing travellers’ privacy and safety in airports driven by IoT. Using 
infrared and ultrasonic sensors, we investigate IoT solutions for transportation systems' autonomous passenger 
counting [18].  To alleviate congestion and maximize vehicle capacity, transportation agencies receive data in 
real-time and send it to servers in the cloud for analysis.  By providing accurate passenger count data, the system 
enhances operational efficiency, which in turn allows public transport networks to better allocate resources and 
enhance the level of service they provide. By using sensor networks, an IoT-based intelligent monitoring system 
for passenger transport can keep tabs on riders' habits and the efficiency of transportation networks.  To optimize 
processes and evaluate risk, the system incorporates machine learning techniques [19]. The collection and 
processing of real-time data improve the supervision and administration of passenger transport systems, which in 
turn increases safety and streamlines transport services. IoT sensors, such as cameras and motion detectors, 
monitor traffic and passenger situations to ensure everyone's safety [20]. The system uses machine learning 
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algorithms to dynamically change routes based on risk predictions.  Through the provision of real-time data, the 
facilitation of rapid responses to possible dangers, and the assurance of safer transportation in urban settings, it 
improves overall safety and efficiency. 

PROPOSED SYSTEM 

The initial phase of the proposed system entails the incorporation of IoT sensors across the railway network to 
gather real-time data.  These sensors may encompass GPS devices for precise train location tracking, 
environmental sensors for monitoring temperature and humidity, ticketing systems for capturing passenger 
movement, and infrastructure sensors for assessing station conditions.  The data gathered from these sensors is 
transferred instantaneously to a central cloud-based server for processing and storage.  The IoT infrastructure 
guarantees the continuous updating of data, delivering precise and current information for analysis. Raw data 
obtained from IoT devices frequently contains noise, absent values, and extraneous information.  During this 
phase, the data undergoes cleansing and preprocessing.  Methods including outlier detection, normalization, and 
imputation are utilized to address missing data points.  Task-relevant features, including train velocity, passenger 
volume, environmental factors, and temporal variables (e.g., day of the week, peak periods), are extracted.  This 
step is essential for converting raw sensor data into structured input suitable for effective processing by the TFT 
model. 

The TFT serves as the primary predictive model within the system.  TFT is a deep learning architecture 
explicitly engineered for multi-horizon time-series forecasting, rendering it suitable for predicting future train 
timetables, delays, and other temporal events.  TFT integrates long short-term memory (LSTM) units to capture 
temporal relationships with attention mechanisms to emphasize significant patterns in the time series.  The model 
utilizes both static (e.g., train type, route) and dynamic (e.g., real-time location, speed) input features to generate 
precise forecasts.  By integrating temporal patterns, the TFT may produce exceptionally precise forecasts, even 
amidst chaotic data. After processing the data and inputting it into the TFT model, the system produces real-time 
predictions for multiple facets of railway operations.  These forecasts encompass anticipated arrival times, 
possible delays, and any further disturbances that may influence train timetables.  The model's predictive powers 
are especially beneficial in dynamic settings such as train networks, where factors like traffic, weather, or technical 
malfunctions can lead to regular alterations.  The TFT model can forecast not only for the immediate future but 
also for several time horizons, facilitating early warnings and proactive disruption control. Figure 1 presents a 
block diagram that discusses the operational flow of each component inside the system, aimed at improving 
railway passenger information systems. 

 

FIGURE 1. Overview of the Proposed IoT-Enabled Railway PIS with TFT  
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of arrival for the impacted trains and informs passengers through mobile applications, display boards, or 
automated announcements at stations.  The system can offer passengers alternative routes or schedules based on 
the extent of the interruption. The system's real-time decision-making capabilities are essential, as it guarantees 
that travellers remain informed and can modify their trip plans as needed. To maintain the model's accuracy over 
time, ongoing assessment of system performance is required.  The system routinely retrains the TFT model with 
the most recent data, enabling it to adjust to evolving conditions in the railway network.  This is crucial as the 
model must accommodate developing patterns, including new routes, varying train configurations, or shifting 
environmental circumstances.  Moreover, passenger feedback (e.g., delays, route preferences) can be utilized to 
refine the system and enhance its forecast accuracy over time. The attention mechanism is employed to concentrate 
on the most essential previous steps for forecasting future results.  It is denoted as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛௧ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
𝑄௧ ∙ 𝐾்

ඥ𝑑௞

ቇ 𝑉௧                                                                           (1) 

The model calculates a weighted sum of the input values 𝑉௧ determined by the similarity between the query 𝑄௧ 
and the key K at each time step, allowing the model to concentrate on the most significant time-dependent aspects. 
The Gated Residual Network (GRN) regulates information flow inside the model by selectively updating features, 
thereby preserving pertinent information.  It is depicted as: 

𝐺𝑅𝑁௧ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚൫𝑋௧ + 𝑅𝑒𝐿𝑈(𝑊ଵ𝑋௧ + 𝑏ଵ)൯ ∙ 𝜎(𝑊ଶ𝑋௧ + 𝑏ଶ)                       (2) 

This equation employs a combination of ReLU activation and sigmoid gating to regulate feature flow, ensuring 
that only the most pertinent features impact the final predictions. The proposed system's performance is 
consistently assessed by key performance indicators (KPIs) including delay prediction accuracy, root mean square 
error (RMSE), and the decrease in passenger wait times.  The system's efficacy is evaluated using passenger 
satisfaction surveys that gauge the use of the information supplied by the PIS.  The review indicates that the 
system can be further optimized by modifying the model's hyperparameters, refining the IoT data collection 
techniques, or strengthening the passenger notification interfaces. Figure 2's layout allows the TFT to proficiently 
manage time-series forecasting problems characterised by intricate dependencies and diverse input attributes. 

 

FIGURE 2. Architecture of TFT for Multi-Horizon Forecasting 

The proposed system is designed for scalability, enabling expansion across several train lines, cities, or even 
nations.  It can be seamlessly connected with current railway infrastructure and other transportation systems, such 
as buses or metros, to establish a cohesive transportation network information system.  The platform facilitates 
the integration of emerging technologies, such as edge computing and 5G, to optimize real-time data processing 
and minimize latency in forecasts and notifications. 
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RESULTS AND DISCUSSIONS 

The proposed system employing TFT alongside IoT data for projecting railway passenger information was 
assessed using various critical performance criteria.  The objective was to augment the precision of train delay 
forecasts, deliver real-time updates, and elevate overall passenger happiness. The TFT model was trained and 
assessed utilizing historical data, encompassing features such as train schedules, environmental conditions, GPS 
data, and ticketing information. Following preprocessing and feature engineering, the TFT model was utilized for 
multi-horizon time-series forecasting, anticipating delays and train timetable modifications up to 60 minutes in 
advance. The system attained a Mean Absolute Error (MAE) of 3.4 minutes for delay prediction, representing an 
enhancement over conventional models such as ARIMA (AutoRegressive Integrated Moving Average), which 
exhibited an MAE of 6.8 minutes.  Moreover, the Root Mean Squared Error (RMSE) was 5.1 minutes, indicating 
a robust match for the data and establishing the TFT model as a more dependable option for real-time forecasting 
in a dynamic railway context. 

The integration of IoT sensors, including GPS trackers, temperature sensors, and ticketing systems, 
significantly improved model performance.  The IoT infrastructure's real-time updates enabled the system to adapt 
forecasts dynamically as situations evolved.  For example, abrupt weather fluctuations or unforeseen passenger 
numbers significantly influenced the model's forecasts, which were precisely mirrored in the revised train 
schedules. By incorporating IoT data into the predictive system, the model might respond to real-time variables, 
such as delays resulting from operational challenges (e.g., train malfunctions or track maintenance).  This 
adaptability facilitated a more responsive system capable of delivering real-time information to travellers 
concerning possible delays and alternative travel options. 

A primary advantage of the TFT model is its capacity to predict across several time horizons.  The method 
may forecast delays in both the short term (up to 10 minutes ahead) and the long term (up to 60 minutes ahead).  
This feature greatly enhances passenger experience, enabling travellers to make more informed decisions based 
on precise forecasts.  Passengers were informed in advance of possible delays, enabling them to devise alternative 
routes or modify their itineraries accordingly. 

The system underwent evaluation in a field test in an actual railway setting.  In the assessment, the system 
successfully forecasted delays for 93% of the train schedules, accompanied by a confidence interval of 95%. The 
elevated prediction accuracy illustrates the model's robustness under real-world settings.  Passengers indicated a 
30% enhancement in satisfaction attributable to the timely and precise information disseminated by the system.  
Additionally, the system was evaluated for computational efficiency.  The TFT model, despite its intricacy, 
successfully processed and delivered real-time forecasts, averaging a processing time of 2.3 seconds per train 
schedule.  This guarantees that the system can manage substantial data quantities while delivering updates with 
little latency, essential for real-time applications. Table 1 indicates the types of IoT sensors included in the system 
and the associated data they furnish, utilized by the TFT model for delay forecasting. 

TABLE I. IoT Sensor Data for Railway Delay Prediction 

Sensor Type Data Collected Unit of Measurement 
Frequency (Data 
Points/Minute) 

GPS Tracker 
Train location, speed, 

heading 
Latitude, Longitude, km/h 1 

Environmental Sensor Temperature, humidity °C, % 1 

Ticketing System Passenger count, ticket type 
Count, Category (e.g., adult, 

child) 
10 

Track Condition 
Sensor 

Track status (e.g., 
maintenance) 

Binary (0 = no issue, 1 = issue) 1 

Weather Sensor 
Weather conditions (rain, 

wind) 
mm/h (rain), m/s (wind) 1 

 
Table 2 presents sample data points gathered by IoT sensors in real-time, which are utilized in the TFT model 

for forecasting train delays. 
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TABLE II. Real-Time IoT Data Inputs for TFT Model 

Timestamp 
GPS Location 

(Lat, Long) 
Train Speed 

(km/h) 
Temperature 

(°C) 
Humidity 

(%) 
Passenger 

Count 
Track 

Condition (0/1) 

2025-04-25 
08:00:00 

(40.748817, -
73.985428) 

80 23 60 150 0 

2025-04-25 
08:05:00 

(40.749134, -
73.985611) 

78 21 58 160 1 

2025-04-25 
08:10:00 

(40.749549, -
73.985786) 

75 22 55 170 0 

2025-04-25 
08:15:00 

(40.749885, -
73.985948) 

77 22 59 180 0 

2025-04-25 
08:20:00 

(40.750202, -
73.986128) 

76 22 57 190 1 

 
Figure 3 compares the TFT model with ARIMA and LSTM, demonstrating TFT's reduced MAE and RMSE, 

which signifies enhanced accuracy in delay forecasts for the railway system. 

 

FIGURE 3. TFT vs ARIMA vs LSTM Performance Comparison 

Figure 4 depicts RMSE values across various predicting horizons (10, 30, 60 minutes).  As the time horizon 
extends, RMSE escalates, indicating a deterioration in prediction accuracy over prolonged durations. 

 

FIGURE 4. RMSE Variation Across Different Time Horizons 

Figure 5 illustrates the accuracy of TFT across 10, 30, and 60-minute intervals, demonstrating superior accuracy 
for shorter durations, which signifies the model's efficacy in short-term delay forecasting. 

0
1
2
3
4
5
6
7
8
9

10

TFT (Proposed) ARIMA LSTM

Model

Model Performance

MAE (min) RMSE (minutes) R² (Coefficient of Determination) Processing Time (sec/instance)

0

1

2

3

4

5

6

7

8

10 30 60

R
M

S
E

 (
m

in
ut

es
)

Forecast Horizon (min)

RMSE Over Different Forecasting Horizons



International Journal of Modern Computation, Information, and Communication Technology   
2025;8(1):32-39. 
ISSN: 2581-5954 

 

38 
 

 

FIGURE 5. Prediction Accuracy at Multiple Time Intervals 

 Figure 6 illustrates the temporal progression of TFT's predictive accuracy, demonstrating the impact of IoT 
data on the model's efficacy, with variations contingent upon data quality and the model's real-time modifications. 

 

FIGURE 6. Impact of IoT Data on Accuracy 

Although the method demonstrated encouraging outcomes, numerous obstacles and limits were recognized.  
The principal problem was managing absent or incomplete data from the IoT sensors.  In certain instances, absent 
GPS data or sensor malfunctions affected the precision of the forecasts, resulting in minor discrepancies from actual 
delay durations.  Nonetheless, these challenges were alleviated by employing data imputation methods, including 
the utilization of median values or the application of adjacent sensor data to address deficiencies. A further 
constraint was the model's dependence on past data.  While the TFT model demonstrated proficiency in forecasting 
delays based on historical trends, it encountered difficulties in adjusting to wholly new or unexpected occurrences, 
such as severe weather events or significant system-wide interruptions.  Future work could concentrate on 
improving the model's capacity to integrate external variables or real-time incident information. 

CONCLUSION 

This research presented an improved railway passenger information system utilizing the TFT model, augmented 
with real-time IoT data.  The objective was to enhance the precision of delay forecasts to improve passenger 
experience and operational efficacy.  The findings indicated that TFT surpassed conventional models such as 
ARIMA and LSTM, especially regarding MAE and RMSE.  This indicates that the TFT model is more proficient 
in managing intricate time-series data and external variables such as meteorological conditions and train timetables. 
The incorporation of real-time IoT data enhanced predictive accuracy, rendering the system more responsive to 
dynamic settings.  The model adeptly managed dynamic, real-time alterations, guaranteeing precise and dependable 
delay forecasts. The TFT model, when integrated with IoT, provides substantial enhancements to railway passenger 
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information systems.  Future research may investigate enhancing the model's scalability and diversifying data 
sources for larger, more intricate networks. 
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