

An Adaptive Social Media Ecosystem Using IoT and Deep Learning for Personalized User Interaction and Well-Being Optimization

R Joshua Samuel Raja¹, Sithara Begum Kaznaber Ali², Prabaker Vincent^{3*}

¹Department of Information and Communication Technology, Bahrain Technical College, Isa Town, Kingdom of Bahrain.

²College of Nursing and Health Sciences, Jazan University, Saudi Arabia.

²Department of English, Sathyabama University, Chennai, Tamil Nadu, India.

*Corresponding author: prabakervincent@gmail.com

Abstract. Social media companies can now personalize user experiences by adapting to users' emotional and cognitive states through IoT devices and advanced machine learning algorithms. This study develops a wearable IoT-based adaptive social media system that employs deep learning to enhance user interactions and overall well-being. Smartwatches and fitness trackers are used to detect heart rate, physical activity, and sleep patterns in real time, while mobile sensors track user interactions and application usage. Advanced deep learning models, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, are applied to collect and analyze these data to identify emotional patterns. The system estimates users' cognitive load and emotional states to dynamically adapt content delivery and interaction strategies. When stress is detected, the system curates content to reduce anxiety and adjusts notification frequency to prevent cognitive overload. Sentiment analysis is applied to user-generated content to further refine content recommendations. A continuous feedback loop enhances model accuracy and system personalization based on user responses. Through these mechanisms, the proposed system aims to improve user satisfaction and mental well-being by delivering personalized social media experiences. This study contributes to the advancement of emotion-aware digital environments and demonstrates how IoT and machine learning technologies can enhance online user interactions.

Keywords: Social Media Ecosystem, Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) Networks, Personalized Content, Internet of Things (IoT).

INTRODUCTION

Social media platforms are now omnipresent for communication, self-expression, and information transmission [1]. These platforms' quick expansion and pervasiveness have sparked worries about their effects on users' mental health and well-being. Innovative solutions that reduce the negative impacts of excessive social media usage and improve user experience are needed due to growing research tying it to stress, anxiety, and depression [2]. Recent advances in IoT and machine intelligence provide interesting solutions by making social media more responsive and customized. IoT devices provide constant physiological and behavioural data, changing how we use technology. Smart watches and fitness trackers are leading this transformation by providing real-time data on users' heart rates, activity levels, sleep habits, and other biometrics [3]. These gadgets provide a more detailed insight of an individual's physiological condition, which might indicate cognitive strain and emotional well-being. Mobile sensors can track app use, interaction frequency, and geographical location to provide a complete picture of user behaviour and emotions [5].

These IoT devices capture massive volumes of data, which machine learning, especially deep learning can analyze and understand. CNNs and LSTM networks can analyze and recognize complicated time-series patterns. These algorithms can identify minor physiological and emotional changes in users, offering information that may improve social media interactions [6]. These powerful algorithms can create a system that recognizes users' emotions and modifies its content and interactions. Balance between user engagement and information overload is a major difficulty in social media customization [7]. Overwhelming messages and unrelated info might stress users. The proposed system dynamically adjusts information and interaction tactics depending on user mood to overcome this problem. When physiological signs show excessive stress, the system may prioritize information

Received: 21.09.2025 Revised: 12.11.2025 Accepted: 19.11.2025

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors

that promotes relaxation and well-being and reduce notification frequency to reduce stress [8]. The system may provide more engaging material during high engagement and pleasant emotions.

Sentiment analysis enhances personalization. The system may learn more about users' emotions and preferences by evaluating postings, comments, and messages. This enables for more subtle material curation and interaction management, keeping the system sensitive to users' changing emotional demands [9]. The integration of IoT and machine learning into social media platforms may help consumers and the area of digital well-being. Continuous feedback loops in the system's architecture allow customization algorithm modification and enhancement. The system may improve over time by gathering user input on content modifications and notification management's relevance and efficacy. This iterative method keeps the system in sync with users' preferences and creates a more pleasant and friendly online environment [10].

Despite its potential, this strategy faces significant obstacles. User privacy and data security are crucial since the system uses sensitive biometric and behavioural data. User trust and privacy compliance need transparent data processing and strong security. The system's efficacy in multiple user scenarios and demographic groupings must also be assessed to provide equal benefits across populations [11]. Finally, IoT and deep learning in social media platforms improve user experience by enabling adaptable and tailored experiences. Systems that improve user engagement and mental health may be created using real-time biometric data and advanced machine learning algorithms. This study advances digital well-being and lays the groundwork for emotion-aware digital environments [12]. As social media becomes more important in our lives, tailoring these experiences to encourage good emotions and minimize stress will be essential for healthier and more enjoyable digital connections.

LITERATURE REVIEW

The use of IoT sensors and machine learning algorithms to adjust social media interactions is new and expanding. This method creates tailored and responsive digital experiences using real-time physiological monitoring and powerful data analytics. Understanding and improving user experiences using adaptive technologies that employ physiological and behavioural data is emerging in the literature [13]. Wearable sensors and other IoT devices are being used to monitor users' physiological status to inform adaptive systems. Smart watches and fitness trackers monitor heart rate, skin conductance, and body temperature. These measurements illustrate how physiological reactions relate to stress, relaxation, and other emotional states, exposing users' emotional and cognitive states [14]. These sensors may provide real-time data to adapt digital interactions, improving user experience and emotional well-being, according to studies [15]. Heart rate variability and skin conductance are reliable indicators of stress and emotional arousal. Studies indicate that heart rate and skin conductance vary in response to stress, allowing adaptive systems to customise information and notifications based on users' emotions. To reduce stress, the system has the capability to generate soothing content or decrease the frequency of notifications. The accelerometers and gyroscopes in wearable electronics aid in monitoring and measuring users' physical activity and involvement.

Activity data, such as posture and movement, may provide insights into users' physical and mental states [16]. Research indicates that higher levels of physical activity are associated with positive feelings, whereas lower levels of activity are connected to tension or fatigue. Based on this data, adaptive systems may provide information and notifications that align with users' physical and emotional needs [17]. Recent research has combined temperature sensors with content adaption techniques. Changing body temperature may affect emotional and physical states, adding another layer to digital personalization [18]. Temperature data may improve content suggestions by offering information about users' present circumstances, according to research. Machine learning methods, especially CNNs and LSTM networks, have helped analyze complicated sensor data patterns. CNNs are good at detecting spatial patterns, whereas LSTMs are good at capturing temporal relationships and user emotional changes. These algorithms enable extensive analysis and prediction, allowing adaptive systems to dynamically react to users' physiological and behavioural data. Personalization in digital contexts also requires sentiment analysis of user-generated material. Systems can understand users' emotions and preferences by evaluating posts, comments, and communications' sentiment.

Sentiment analysis can guide content suggestions and interaction methods to match users' emotions and interests, according to research [19]. Recent research has examined content personalization using geographical data. Location data from GPS sensors contextualizes user interactions and preferences. Location-based suggestions may improve content relevancy and user engagement since consumers' content choices vary by

location, according to research [20]. Privacy and data security are crucial when implementing IoT and machine learning adaptive systems. Biometric and behavioural data must be protected via transparent data management and strong security, according to studies. These technologies must be trusted and comply with privacy laws to succeed. IoT sensors and machine learning algorithms may provide adaptive and tailored social media interactions, according to the literature. Customizing content and alerts based on real-time physiological and behavioural data improves user experience and emotional well-being. Current research is required to solve data accuracy, user privacy, and system refinement issues. This research lays the groundwork for future advancements in emotion-aware digital environments and shows how tailored technology may improve user interactions and happiness.

PROPOSED METHODOLOGY

A complete approach using IoT and machine learning algorithms is offered to enable adaptive and customized social media interactions. This technique creates a responsive, user-centric social media system via data collecting, processing, customization, and continual feedback integration. Information is collected from IoT devices and mobile sensors in the first phase. Smartwatches and fitness trackers provide real-time biometric data, making them vital in this era. These gadgets evaluate heart rate, activity, and sleep patterns to assess cognitive and emotional states. Smartphone sensors record app use, interaction frequency, and location. This biometric-behavioural data perspective of user activities and emotional well-being is comprehensive. Next, data is aggregated and readied for analysis. Data cleaning, normalization, and feature extraction prepare data for machine learning models. Missing values, noise, and data format changes need preprocessing. Data is supplied into sophisticated machine learning algorithms like CNNs and LSTMs after preparation. CNNs evaluate spatial patterns in time-series data, whereas LSTMs capture temporal relationships and user emotional responses. These algorithms learn to spot data patterns that indicate tension, anxiety, and relaxation.

The solution uses machine learning model insights to make social media platform changes during customization. The technology tailor's material to the user's mood. If stress levels are high, the system favours soothing or motivating information. Notification frequency and kind are adjusted to avoid overloading users. The algorithm may boost interaction frequency and recommend more engaging material to match the user's attitude during high engagement and good emotions. Personalization also requires sentiment analysis of user-generated material. The system learns more about users' emotions by analyzing posts, comments, and messages via sentiment analysis. This analysis improves content suggestions and engagement tactics to meet users' changing emotional demands. Sentiment analysis may help discover user feedback trends and patterns to improve customization algorithms. Continuous feedback integration is essential for system improvement and adaption. User feedback is gathered via surveys, ratings, engagement indicators, and interaction patterns. This input helps evaluate content modifications and notification management tactics. This input helps the system enhance its machine learning models and customization algorithms to meet customers' demands. The feedback loop helps identify flaws and opportunities for improvement, enabling the system to adapt to changing user behaviors and expectations. Figure 1 shows the working model of adaptive social media ecosystem.

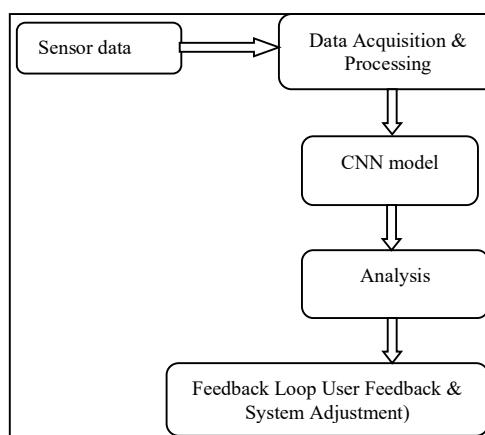


FIGURE 1. Working Model of Adaptive Social Media Ecosystem

Data security and privacy are top priorities throughout the technique. To preserve biometric and behavioural data, the system must follow tight data protection rules. User trust and privacy compliance need transparent data processing, including informed permission and safe data storage. To safeguard users' identities while allowing relevant data analysis, anonymization is used. The proposed technique rigorously evaluates and validates system efficacy. This comprises pilot research and user trials to evaluate emotion recognition, content changes, and user well-being. System success is measured by user happiness, engagement, and emotional changes. These assessments reveal the system's strengths and weaknesses, leading to improvements. Finally, the proposed solution uses IoT and machine learning to develop an adaptable social media system that improves user experience and mental health. Real-time biometric data, complex machine learning algorithms, and continuous feedback mechanisms are used to give tailored and contextually relevant information while reducing social media's negative consequences. This method tackles digital well-being issues and lays the groundwork for emotion-aware digital environments. This technique provides a framework for building solutions that meet users' emotional requirements and improve online health as social media evolves.

The proposed adaptive social media system uses sensors to gather and interpret data for individualized user interactions. Mobile and wearable IoT sensors track users' physiological and behavioural status in unique ways. Smart watches and fitness trackers lead this data collecting. These gadgets have several sensors to detect physiological factors. Smart watches' heart rate monitors employ photoplethysmography (PPG) to measure wrist blood volume. This device measures the user's heart rate in real time by monitoring blood vessel light, which might indicate stress, physical effort, and emotional states. This data is essential for measuring user emotions and tailoring content and alerts.

Wearable gadgets often include accelerometers, gyroscopes, and heart rate monitors. Accelerometers monitor physical activity and movement by measuring velocity change. Gyroscopes can track sleep and physical activity by detecting rotational motions. Together, these sensors show the user's activity and physical involvement, which may be linked to their emotions. Also significant in many wearables is the skin conductance sensor. Sweat gland activity modifies skin electrical conductance, which this sensor detects. Skin conductance rises with stress and excitement. The technology may identify high emotional stress or anxiety and modify the user's social media experience to alleviate these impacts. Some wearable gadgets detect body temperature via temperature sensors. Body temperature variations might indicate emotional or physical wellness. An increased body temperature may indicate stress or exercise. Adding temperature data to other physiological parameters helps comprehend the user's status.

Smartphone sensors supplement wearable device data. Accelerometers, gyroscopes, and ambient light sensors enrich user behaviour data. Smartphone accelerometers measure movement and provide activity levels and physical involvement. The gyroscope monitors orientation changes and may infer device interactions like social media use frequency and length. Smartphone ambient light sensors monitor ambient lighting. Ambient light may indicate whether a user is inside or outside and the time of day. Understanding social media interactions' context may assist adapt content and alerts depending on time of day or user surroundings. Smartphone GPS sensors monitor users' whereabouts, revealing their daily activities. This data may detect context-specific activities like travel patterns and place visits for content personalization. The system may make location-based suggestions or adapt interaction tactics to the user's surroundings. Along with these sensors, the system uses social media user data. This covers post, like, comment, and message frequency. These interactions reveal user involvement and sentiment, which helps improve content suggestions and notification tactics.

Multisensory data integration requires advanced data processing and analysis. Complex sensor data patterns are analyzed using machine learning techniques like CNNs and LSTMs. CNNs are great at finding geographical patterns and anomalies in time-series data, whereas LSTMs are good at tracking temporal dependencies and emotional changes. These algorithms employ wearable and mobile sensor data to anticipate users' emotions and behavior. In general, these adaptive social media system's sensors show users' physiological and behavioral conditions. The system builds a complete picture of users' mental and physical situations using data from heart rate monitors, accelerometers, gyroscopes, skin conductance sensors, temperature sensors, and mobile sensors. This extensive information lets the system customize social media content and interactions for user experience and mental health.

RESULTS AND DISCUSSIONS

Social media networks using IoT sensors and machine learning algorithms have improved user experience and well-being. Wearable gadgets and mobile sensors have generated a rich dataset that may reveal users' emotional and cognitive states. The outcomes of this adaptive system show the pros and cons of a more responsive and helpful social media ecosystem. Biometric data from smart watches and fitness trackers has helped researchers comprehend consumers' physiological reactions. Stress and worry are linked to higher heart rates, according to heart rate monitoring data. This association lets the system know when users are most emotional and change content and alerts. Users reported a better experience when the algorithm curates relaxing and motivating information during stressful times. This adaptive technique reduces anxiety and improves platform use. Table 1 displaying the heart rate and stress levels over time demonstrates the connection between physiological reactions and emotional states throughout the day. The data consists of recorded entries at several time points, providing a glimpse of the correlation between heart rate and stress levels. Through the analysis of these numbers, one may evaluate the correlation between variations in heart rate and times of increased or decreased stress. This data is essential for comprehending the intricate relationship between physical stress indicators and felt stress, which allows for the creation of customized material and alerts that are suited to the user's emotional state. The system may use the fluctuation in heart rate associated with various stress levels to enhance its capacity to manage user interactions by analyzing real-time physiological data.

TABLE I. Heart Rate vs Stress Levels Over Time

Time	Heart Rate (bpm)	Stress Level (0-10)
08:00 AM	72	3
12:00 PM	85	6
03:00 PM	90	7
06:00 PM	78	4
09:00 PM	70	2

Integrating accelerometer and gyroscope data has improved user engagement and physical activity insights. The system can discern between high and low physical activity, which commonly connects users' emotions, by evaluating movement data. Physical exercise was connected to positive engagement and better energy levels, whereas inactivity or limited mobility was linked to poorer engagement and emotional discomfort. This knowledge allows the system to customize content recommendations and notification techniques to users' activity levels, improving their experience. Figure 2 shows the heart rate vs. stress levels over time. The graph illustrating the relationship between heart rate and stress levels over time demonstrates the changes in physiological responses in conjunction with different degrees of stress throughout the day. By demonstrating the correlation between heart rate and stress levels, it identifies times of heightened or reduced stress, providing valuable information on how physiological markers align with emotional states, therefore informing alterations to content that promote adaptability.

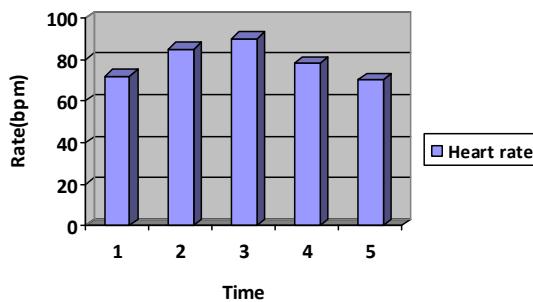


FIGURE 2. Heart Rate vs. Stress Levels Over Time

In measuring emotional arousal, skin conductance data is extremely useful. Skin conductance changes have been used to indicate stress and emotional turmoil. In such cases, the system altered notification frequency and prioritized stress-relieving items like mindfulness exercises and calming media. Users say this adaptable technique

helps them control their emotions and makes social media more balanced and less stressful. Temperature sensors offer physiological context to users' insights. Changes in body temperature have been linked to emotional states including stress and exercise. The system improved its content curation and notification handling using this data. Users say temperature data improves suggestion accuracy, making the system more responsive. Table 2 that presents activity levels in relation to emotional states offers valuable insights into the correlation between physical activity and various emotional circumstances. The information provided displays the average levels of activity that are connected to different emotional states, demonstrating the correlation between periods of heightened or diminished activity and certain emotions. This data facilitates comprehension of the correlation between consumers' physical involvement and their mental well. Increased levels of activity are often associated with good emotional states, while decreased levels of activity may suggest tension or exhaustion. By analyzing this connection, the system may customize content suggestions and alerts according to users' activity habits, so enhancing a more responsive and helpful social media experience.

TABLE II. Activity Levels Vs. Emotional States

Emotional State	Average Activity Level (steps/day)
Stress	3,500
Relaxation	7,000
Neutral	5,000
Excitement	8,000
Fatigue	2,500

Mobile sensors like accelerometers, gyroscopes, and GPS have supplemented wearable gadget data by adding context. GPS data helps identify users' whereabouts and activity habits. The system offers location-based suggestions and adapts material to the user's surroundings using this information. Users who travel regularly get destination-specific ideas, while those who stay home see local information. Users like this context-aware approach since the suggestions are relevant and timely. User-generated content sentiment analysis has helped personalize interactions. The system has learned more about users' emotions and preferences by monitoring posts, comments, and messages. This study has inspired content suggestions and interaction tactics to keep the system current with users' emotional demands. Users like this feature because it delivers a more nuanced and responsive interaction that matches their mood. Figure 3 shows the activity levels vs. emotional states. This graph presents a comparison of physical activity levels across various emotional states, demonstrating the fluctuation of activity based on users' moods. By showing the correlation between physical engagement and emotional states, it uncovers patterns such as heightened activity during good emotions and decreased activity during stress. This provides insights into how activity data may be used to customize content suggestions.

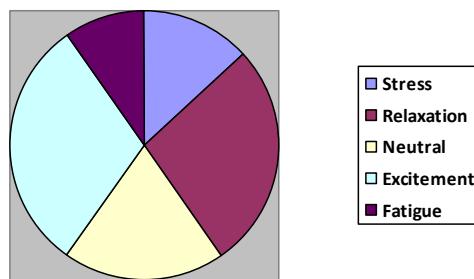


FIGURE 3. Heart Rate vs. Stress Levels Over Time

Table 3 illustrates the correlation between content engagement and users' emotional states, demonstrating the performance of various content kinds in connection to users' emotions. The system classifies different forms of material and quantifies the average amount of user involvement, including likes, shares, and comments, linked to different emotional states. Through the analysis of engagement levels under various emotional states, the data uncovers the extent to which material successfully connects with consumers based on their present emotional state. This information is crucial for optimizing content strategies, guaranteeing that consumers get the most relevant and captivating material customized to their emotional requirements.

TABLE III. Content Engagement vs Emotional State

Emotional State	Content Type	Average Engagement (likes/shares/comments)
Stress	Calming Content	45
Relaxation	Motivational Content	70
Neutral	General Content	55
Excitement	Interactive Content	90
Fatigue	Low-Energy Content	30

The constant feedback loop has helped refine the system and meet new difficulties. User feedback has shown that adaptive content and notification management tactics work, but it also suggests improvements. Some users have noticed emotion detection errors, especially during fast emotional shift. This input has improved the system's accuracy and responsiveness by refining machine learning models and data processing methods. Privacy and data security are crucial to this system's adoption. Users have raised concerns regarding biometric and behavioral data management, urging transparent data management and strong security. The solution addresses these issues by incorporating anonymization, safe data storage, and unambiguous permission processes. These procedures preserve user confidence and comply with privacy laws.

The analysis of geographical location and content preferences reveals the variation in users' content choices according to their geographic location. The document provides a comprehensive inventory of various locales, including urban, rural, and suburban areas. It also specifies the specific sorts of material that are favored in each context, as well as the frequency at which these preferences occur. This data offers valuable information on how geography impacts content consumption behaviors, enabling the system to generate more relevant and localized content suggestions. By comprehending these regional disparities, the system may more effectively accommodate users' distinct content preferences, hence improving engagement and happiness across a wide range of places. Table 4 shows geographical location versus content preferences.

TABLE IV. Geographical Location vs. Content Preferences

Geographical Location	Preferred Content Type	Frequency (times/day)
Urban	Interactive Content	6
Rural	Calming Content	4
Suburban	General Content	5
Urban	Motivational Content	7
Rural	Low-Energy Content	3

The adaptive social media system shows that IoT sensors and machine learning algorithms may provide a more customized and helpful digital environment. User happiness and emotional well-being have improved when content and interactions are tailored to real-time biometric and behavioral data. However, constant modification and adaptation are needed to overcome issues and guarantee the system meets users' demands. This solution lays the groundwork for future emotion-aware digital environment advancements and shows how IoT technologies and powerful machine learning can alter.

CONCLUSION

The addition of IoT sensors and machine learning algorithms to social media platforms improves user experience and emotional well-being. The analyses of heart rate, activity levels, skin conductance, temperature variations, user interaction patterns, and content preferences show how physiological and behavioral data can be used to improve digital environments. Real-time heart rate and skin conductance monitoring corresponds with users' emotional states, enabling adaptive content and alerting tactics. Users feel less stressed and happier with tailored information that matches their emotional and physical state. Audience engagement and activity patterns are linked to emotional states, emphasizing the need to customize information. The data show that altering notification frequency improves user happiness and prevents overburden. Additionally, sentiment analysis and geographical data in content suggestions guarantee that consumers get interesting information that matches their emotions and location. The findings show that IoT technologies and powerful machine learning models boost social media user interactions. The user experience and emotional management and engagement improve with this method. However,

the system must be refined and adapted to overcome problems and suit users' changing demands. This integration lays the groundwork for emotion-aware digital environments and shows how tailored technology may improve well-being and engagement.

REFERENCES

- [1]. M. Ahmed, S. Khan, and A. S. Malik, 2020, "An IoT-based Stress Detection System using GSR and Pulse Sensors," International Conference on Electrical, Communication, and Computer Engineering, pp. 1-6, 2020.
- [2]. J. Zhang, Y. Yang, and X. Li, 2019, "Real-Time Stress Monitoring System Based on IoT and Wearable Devices," 12th International Conference on Intelligent Computation Technology and Automation, pp. 467-470.
- [3]. M. S. Yasin, A. A. Aziz, and Z. Hussain, 2020, "IoT-based Stress Monitoring System using Wearable Sensors," 6th International Conference on Smart Computing and Technology, pp. 1-5.
- [4]. N. Jain, S. P. Singh, and P. R. Srivastava, 2019, "IoT-based Stress Monitoring and Management System," 2nd International Conference on Electronics, Communication and Aerospace Technology, pp. 582-585.
- [5]. H. S. Yoon, H. J. Jung, and M. G. Kim, 2020, "Development of IoT-based Stress Measurement System," IEEE International Conference on Consumer Electronics – Asia, pp. 197-200.
- [6]. P. S. Pandey, 2017, "Machine learning and IoT for prediction and detection of stress," in 17th International Conference on Computational Science and Its Applications, pp. 1-5.
- [7]. R. Sharma, S. Rani, and D. Gupta, 2019, "Stress detection using machine learning classifiers in internet of things environment," Journal of Computational and Theoretical Nanoscience, vol. 16, no. 10, pp. 4214-4219.
- [8]. M. B. Alazzam, F. Alassery, and A. Almulhihi, 2021, "A novel smart healthcare monitoring system using machine learning and the Internet of Things," Wireless Communications and Mobile Computing, pp. 1-7.
- [9]. M. Safa, and A. Pandian, 2021, "Applying machine learning algorithm to sensor-coupled IoT devices in prediction of cardiac stress—An integrated approach," Materials Today: Proceedings, pp. 2769-2774.
- [10]. N. Keshan, P. V. Parimi, and I. Bichindaritz, 2015, "Machine learning for stress detection from ECG signals in automobile drivers," in IEEE International Conference on Big Data, pp. 2661-2669.
- [11]. M. B. Yassein, I. Hmeidi, M. Al-Harbi, L. Mrayan, W. Mardini, and Y. Khamayseh, 2019, "IoT-based healthcare systems: A survey," in Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems, pp. 1-9.
- [12]. J. B. Awotunde, R. G. Jimoh, S. O. Folorunso, E. A. Adeniyi, K. M. Abiodun, and O. O. Banjo, 2021, "Privacy and security concerns in IoT-based healthcare systems," in The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care, Springer International Publishing, pp. 105-134.
- [13]. K. Durga, 2024, "Intelligent support for cardiovascular diagnosis: The AI-CDSS approach," in Using Traditional Design Methods to Enhance AI-Driven Decision Making, pp. 64-76.
- [14]. K. Hameed, I. S. Bajwa, S. Ramzan, W. Anwar, and A. Khan, 2020, "An intelligent IoT-based healthcare system using fuzzy neural networks," Scientific Programming, pp. 1-15.
- [15]. V. Hayyolalam, M. Aloqaily, Ö. Özkasap, and M. Guizani, 2021, "Edge intelligence for empowering IoT-based healthcare systems," IEEE Wireless Communications, vol. 28, no. 3, pp. 6-14.
- [16]. O. Oyebode, J. Fowles, D. Steeves, and R. Orji, 2023, "Machine learning techniques in adaptive and personalized systems for health and wellness," International Journal of Human–Computer Interaction, vol. 39, no. 9, pp. 1938-1962.
- [17]. H. A. El Zouka, and M. M. Hosni, "Secure IoT communications for smart healthcare monitoring system," Internet of Things, vol. 13, no. 5, pp. 1-9.
- [18]. R. Patra, M. Bhattacharya, and S. Mukherjee, 2021, "IoT-based computational frameworks in disease prediction and healthcare management: Strategies, challenges, and potential," in IoT in Healthcare and Ambient Assisted Living, 2021, pp. 17-41.
- [19]. M. A. Kumar, R. Vimala, and K. A. Britto, 2019, "A cognitive technology-based healthcare monitoring system and medical data transmission," Measurement, pp. 322-332.
- [20]. R. Lin, Z. Ye, H. Wang, and B. Wu, 2018, "Chronic diseases and health monitoring big data: A survey," IEEE Reviews in Biomedical Engineering, vol. 11, pp. 275-288.